
MCR-89-516
Contract No. NAS8-36433

Interim
Final

Report July 1990

Space Station
Automation of
Common Module
Power Management
and Distribution

(NASA-CR-184035) SPACE STATION AUTqMATIGN

OF COMMON MOOULE POWER MANAGEMENT AND

DISTRI3UTION, VOLUME 2 Cinal Report (Martin

Mariett_ Corp.) 4b] p CSCI 22B

Ngi-12748

Unclas

G3120 0310575

MA RTIN MARIETTA

r_

im_wL _
J

i

v

MCR-89-516
Contract No. NAS8-36433

Interim

Final

Report

July 1990

SPACE STATION
AUTOMATON OF COMMON MODULE

POWER MANAGEMENT AND DISTRIBUTION

B. Ashworth
J. Riedesel

C. Myers
L. Jakstas
D. Smith

Martin Marietta Aerospace
Denver Astronautics Group

P.O. Box 179

Denver, Colorado 80201

f

Interim

Final Report MCR-89-516
Foreword Volume II July 1990

This report was prepared by Martin Marietta Denver Astronautics Group for

the National Aeronautics and Space Administration, George C. Marshall Space Flight

Center (NASA/MSFC), in response to Contract, NAS8-36433, and is submitted as the

Interim Final Report, as specified in the contract data requirements list. In particular, the

work was performed for the Electrical Power Branch at NASA/MSFC.

Readers of this document are referred to NASA Contractor Report 4260

Space Station Automation of Common Module Power Management and Distribution and

NASA Contractor Report 4273 Knowledge Management: An Abstraction of Knowledge

Base and Database Management Systems.

Foreword
.

Table of Contents

Interim

Final Report MCR- 89-516
Volume II July 1990

1.0

2.0

3.0

4.0

5.0

6.0

INTRODUCTION

TESTBED 120 VOLT DC STAR BUS CONFIGURATION AND OPERATION

SSM/PMAD AUTOMATION SYTEM ARCHI'IECTURE

FRAMES RULES ENGLISH REPRESENTATION

THE SSM/PMAD USER INTERFACE

SSM/PMAD FUTURE DIRECTION

1-1

2-1

3-1

4-1

5-1

6-I

x...j

SSM/PMAD Table of Contents

Appendixes

Interim

FinalReport
VolumeII

MCR-89-516

July 1990

SSM/PMADINTERFACEUSERMANUAL VERSION1.0

SSM/PMADLLP REFERENCE

SSM/PMADTECHNICAL REFERENCEVERSION1.0

SSM/PMADLLPVCLRs

SSM/PMADLLP/FRAMESICD

SSM/PMAD LLP SIC ICD

I-ii

II-1

m-ii

IV-1

V-1

VI-1

SSM/PMAD Appendixes

V

SSM/PMAD ACRONYMS

Interim

Final Report MCR-89-516

Volume 1I July 1990

A/I)

AC

ACM/PMAD

AI

BLES

CAC

CAS

CLOS

DC

ECLSS

EMI

EPLD

FELES

FRAMES

GC

H/W

ICD

JSC

KBMS

KHz

KNOMAD-SSM/PMAD

K'VA

L-R

LC

LES

LISP

LLF

LLP

LPL

LPLMS

Analog to Digital Conversion

Alternating Current

Automation of Common Module Power Management and

Distribution

Artificial Intelligence

Baseline Load Enable Schedule

Communications Algorithmic Controller

Communication and Algorithmic Software

Common Lisp Object System

Direct Current

Environmental Control Life Support System

Electro-Magnetic Interference

Erasable Programmable Logic Device

Front End Load Enable Scheduler

Fault Recovery and Management Expert System

Generic Controller

Hardware

Interface Control Document

Johnson Space Center

Knowledge Based Management System

KiloHertz

Knowledge Management and Design Environment applied

to the SSM/PMAD Domain.

KiloVolt Amps

Inductive-Resistive

Load Center

Load Enable Scheduler

List Processing

Lowest Level Function

Lowest Level Processor

Load Priority List

Load Priority List Management System

"__J ACRONYMS

SS1V_PMADACRONYMS

Interim

FinalReport MCR-89-516
VolumeII July 1990

MAESTRO

MMAG

MSFC
NASA

NDA

OMS
PCL
PCU
PDCU

PLES
PPDA
RBI

RCCB
R.MS
RPC
SADP

SDA
SI
SIC

SPST
SSM

SSM/PMAD
SSS

S/W
TCP/IP
UI
VCLR

Masterof AutomatedExpertSchedulingThroughResource
Orchestration
MartinMariettaAstronauticsGroup

MarshallSpaceFlightCenter
NationalAeronauticsandSpaceAdministration
NodeDistributionAssembly

OperationalManagementSystem
PortableCommonLoops
PowerControlUnit
PowerDistributionControlUnit

PreliminaryLoad Enable Schedule

Primary Power Distribution Assembly

Remote Bus Isolator

Remote Control Circuit Breaker

Root Mean Square

Remote Power Controller

Systems Autonomy Demonstration Program

Subsystem Distributor Assembly

Symbolics Interface

Switchgear Interface Controller

Single Pole Single Throw

Space Station Module

Space Station Module Power Management and Distribution

Supervisor Subsystem Simulator

Software

Transmission Control Protocol / Internet Protocol

User Interface

Visual Control Logic Representation

ACRONYMS

_j

-...j INTRODUCTION

Interim

Final Report MCR-89-516
Volume II July 1990

1.0 INTRODUCTION

Space Station Module Power Management and Distribution System (SSM/PMAD)

1.1 Scope

This report is intended to describe the new SSM/PMAD testbed automation system.
The system, with automation hardware and software elements, was most recently delivered
to NASA, George C. Marshall Space Flight Center in June, 1990. All product names are
trademarks of their manufacturers.

1.2 Coverage and Changes

Since the SSM/PMAD Interim Final Report was delivered in February of 1989
several significant changes have occurred. These are:

• 120 Volt de Star Bus Configuration
• New general purpose workstation hardware (Solbourne 5/501)
• New multi-tasking workstation operating system (UNIX)
• New LLP hardware (Intel 80386 based processors)
• New Communications protocol and hardware (Ethemet TCP/IP)
• Parallel knowledge base management system (KBMS)
• Integrated database/knowledge management system (KNOMAD-SSM/PMAD,

- a specialized KBMS)
• Rule organization for the FRAMES expert system
• Handling of multiple faults
• Cooperative interaction capabilities using the KNOMAD-SSM/PMAD
• Significant improvement in LLF transactions and fault management
• Significant improvement in the User Interface

Each of the topics will be reported on in this IFR Update which is intended to
accompany the June 1990 delivery. The testbed changes and enhancements reported on
include the October 1989 and June 1990 deliveries. Readers of this document are referred

to the list of acronyms and abbreviations at the front of the report

1.3 Overview

Following the December 1988 delivery of the SSM/PMAD automation system,
work immediately began to update and improve the automation software. NASA's
directive for 120 Vdc on the Space Station Freedom was in effect, and several weaknesses
in the delivered FRAMES software had surfaced. The fault management knowledge
needed reorganization, and management of the knowledge entities in the testbed was not
present. The user interface needed to be made seamless with respect to the computer
operating systems and languages being used. Some of the needed enhancements and

INTRODUCTION
1-1

INTRODUCTION

Interim

Final Report MCR-89-516
Volume II Julv 1990

V

developments were delivered in October 1989 and June 1990; others are to be delivered in
December 1990.

The original SSM/PMAD automation system contained several key weaknesses.
These were:

• Non multi-tasking operating system interactions leading to poor performance.
• Special purpose AI system hardware which provided weak communications

systems and multi-tasking support.
• LISP function level knowledge representation which impeded system performance

and promulgated rigidity.

Power
Hardware

Figure 1.1-1.

Fixed

Configuration
Data

_i LLPs /LLFs

-" LLP to SIC I

Data Requests

Command

Requests

Single-Threaded]

Diagn°sis ! <_Formulated

+ ...

Fault &
Status
Data

Xerox I FRAMES

Execute

• Q _ _

_ • S ¢

Functional
Fault Search Tree

6

Past SSMIPMAD Fault Isolation Methodology

The solution to the system weaknesses was to introduce new general purpose
hardware to replace the Xerox 1186 AI workstation, the VME/10 CAC workstation, the
MVME 107 LLPs, and to reorganize and enhance the software and knowledge
representations within the system.

INTRODUCTION

i-2

INTRODUCTION

Interim

Final Report MCR-89-516
Volume II July 1990

Figure 1.1-1 depicts the fault isolation methodology used in the past S SM/PMAD
system. A functional path through a decision tree was executed until the fault was
identified. This presented many obstacles when multiple faults or faults in a non-well-
behaved system occurred. It also made updating of knowledge processing activities very
difficult as the introduction of new functions affected all of the processing activities
underneath. Essentially, the LISP read-eval-print control loop also functioned as the rule-
interpreter.

Figure 1.1.2 shows the new knowledge control mechanism which leads to a new
fault isolation methodology. Rules and objects are treated as knowledge entities by the
KNOMAD-SSM/PMAD knowledge manager. The rules and objects exist within the
knowledge bases, which can be executed as parallel agents. This provides a strong
environment for cooperating expert systems.

Power
Hardware

Figure 1.1-2

Fixed

Configuration
Data

-_ LLP to SIC

Data Requests

Command

Requests

LLPs /

LLFs Fault &
Status

Data

Solbourne/
KNOMAD-SSM/PMAD

FRAMES

I I
Multiple Knowledge Bases

I {
Present SSM/PMAD Fault Isolation Methodology

The management of knowledge objects and data provided by the KNOMAD system
is a key element to the increase in performance (from 10 to 200 times) of the overall
SSM/PMAD system. Also adding to the increase were the introduction of ethernet as the
communications link between the Solbourne 5/501 workstation and the LLPs; and the use

INTRODUCTION
1-3

INTRODUCTION

Interim _

Final Report MCR-89-516
Volum_ II July 1990

of 80386 based processors for the LLPs. Perhaps the single biggest change was the use of
the Solbourne 5/501 workstation employing the UNIX multi-tasking operating system.
Allegro Common LISP is used. When the present automation system is compared to the
Xerox 1186 and its native InterLISP operating environment from the past SSM/PMAD
system, gains are made in development time, time spent on test an debug, overall system
capabilities (such as graphical interface), and execution performance. KNOMAD-
SSM/PMAD provides much greater flexibility in updating knowledge bases.

1.4 Organization

Sections and appendixes in this report will describe the 120 Vdc STAR bus
topology, the new system architecture, the new knowledge management mechanism, the
new LLP capabilities, the new user interface, and future directions. All significant
technical detail will be supplied in the appendixes.

=

INTRODUCTION
1-4

DC/STARTOPOLOGY

Interim
FinalReport MCR-89-516

Volume II July 1990

2.0 TESTBED 120 VOLT DC STAR BUS CONFIGURATION AND OPERATION

2. I Configuration

The fin'st version of the SSM/PMAD testbed was based on 208 Volts, 20 KHz ac

configured in a ring bus topology. In December, 1988, NASA specified a 120 Volt dc
source for the Space Station Freedom. Also specified was a change to a star power bus
topology. Figure 2.1-1 depicts the resulting SSM/PMAD testbed organization following
these NASA specified changes.

Rules within the FRAMES knowledge base were changed as was the lower level
FRAMES at the LLPs. Also changed were the system models at the Symbolics 3620D and

the Solbourne 5/501 Workstation. 1

The resulting system-wide architecture is favorable to the distributed Lower Level
Processors. At the Solbourne Workstation the communications handling segment manages
the messages to and from the LLPs. KNOMAD'SSM/PMAD handles distribution of
knowledge and database updates. FRAMES isolates and handles fault situations and
distributes schedule segments to appropriate LLPs.

When the source changed from ac to de there was no longer need to integrate at the
switch hardware level tocalculate the power factor. Therefore, the power factor (a nominal
value of 1) and the system power is appropriately calculated at the LLP as P=VI.

2.2 Operation

The operational flow of the SSM/PMAD testbed consists of functional interactions
between the various computational and control elements which result in hardware
commands. System flow diagrams show these activities in Figures 2.2-1 through 2.2-7
and 2.2-9 through 2.2-11.

Intersystem communication between the SSM/PMAD testbed and other testbeds is
crucial if the SSM/PMAD testbed is to serve as a realistic prototype for the Space Station
Freedom. A candidate power profiling configuration for communications items is depicted
in Figure 2.2-8. The dynamic items to be handled are the priorities of the loads to be
powered and the minimum and maximum power which is to be supplied to those loads
according to the associated priorities.

For the operation of the testbed to be meaningful during management of different
faults, it is necessary for there to be a single process definition for how fault information is
managed, and how fault isolation information is gathered. Figure 2.2-12 shows the fault
isolation process used WhenFRAMES interrogates the LLPs in the SSM/PMAD testbed.

The Xerox 1186 AI workstation has been replaced by a Solbourne 5/501 general purpose
workstation

DC/STAR TOPOLOGY
2-1

DC/$TAR TOPOLOGY

Interim

Final Report
Volume 17

MCR-89-516

July 1990

/I

SENSOR

VOLTAGE

CURRENT

POWER

STAR

BUS

A

PDCU A PDCU B

POWER

STAR

BUS

B

LOAD

LOAD CENTER

-[.REMOTE REMOTE

"['POWER BUS

CONTROLLER ISOLATOR

!OR3 KW 15KW

LOAD LOAD

CENTER

ETHERNET

LLP - Lowest Level Processm- (80386)

PDCU - Power Distribution Control Unit

SIC - Switchgem" Interface Controller
A/D - Analog to Digital Card

V

Figure 2.1-1 The SSM/PMAD Block Diagram

DC/STAR. TOPOLOGY
2-2

_._j

DC/STAR TOPOLOGY

Big Picture 1

Interim

Final Report
Volume 1I

MCR-89-516

July 1990

UNIX

LISP _ FRAMES I
! I XMTR

SY ml_llcs _RCVR] FIFO

._ LLP-_RCVR

. LLP-ERCVR

LLP_

RCVR

LLP-ERCVR

{ LLP-FRCVR

I LLP-(

RCVR

LLP-P
RCVR

i

I

Output
Queue

KNOMAD

Flip t 'Switch

f.l._.
Close

Switches

Gathel
Data

I FRAMESE.S.

Gather Data /

and Start _
Dlagnosla

1 FIFO

Queue _i FRAMES

""_ --"] RCVR

Virtual TCP Connections

Make TCP C°nnecti°ns I I

DataBase

DataBase
Interface

1
Procala

Switch Slatu_

I

____ P,ocas, t--IEvent List
I

_1 K
gwm

I

Common Windows

CLX

I TCPConnection

X Server

Ethernet Graphic
Display

Figure 2.2-1 SSM/PMAD FRAMES Overall Operational Flow

DC/STAR TOPOLOGY
2-3

DC/$TAR TOPOLOGY

Interim

Final Report
Volume II

MCR-89-516

July 1990

Flowchartand Big PictureExplanations

Process.Usedtorepresenta processrunninginparallelwithotherprocesses.Consists
ofanalgorithm.

V

Funclion. Usedtorepresenta basicfunction. Executesina process.

Dashedarrowrepresentsa "fork'.A fork iswhereoneprocessstartsanotherprocessand
thencontinuesonwhilethestartedprocessrunsinparallelwiththeoriginalprocess.

Globalvariable(evenoverproceses)

TheBigPicture.
Thebigpicturerepresentsa lotofwhatishappeningon theSolboume.Thefunctions
associatedwithupdatingtheuserinterfaceare notrepresented.Mostofthecommunicationsprocesses
arerepresented.
Basically,whatishappeningisthatthereare nineprocesseslisteningformessagesfTomtheother
processors.Asa messageis receiveditisqueuedupon theinputqueueandtheFRAMESreceiveris
signalled.TheFRAMESreceiverthendetermineswhatkindofmessageitisandstartsoffa processfor that
message.Messagesusuallyrequireupdatingthedatabaseaswellas theuserinterface.Ifthereisa fault
signalled,a gather-data-and-start-diagnosisprocessisstarted.Thisprocessusesthegather-dataroutine
to actuallywaitforandqueryfordata.Theseroutinesaredescribedin_ accompanyingflowcharts.
Whena queryismadeorcommandperformed,themessageis putontheoutputqueueandthetransmitter
isnotified.Additionally,asa partoffaultdagnosis,commandstoflipor closeswitchesmaybe
executed- whichinvotvesa callto thegather-dataroutineto seewhathappens.

TheArchitecture.
Animportantimplementationalconsiderationisthe architectureofwhatprocessesarerunningand
whatenvironmentaretheyrunningin. AstheBigPictureshows,mostoftheprocessesfor theuser-
interfaceanddatacollectionareperformedinLISP.Toactuallytalk totheoutsideworldrequiresan
interfacetoUNIX(usingC functions)forethernetcommunicationsandforexecutinguserinterface
functions.
Lets lookat thisina bitmoredetail.UNIXmanagesmdtipletasksby_uling amountsofCPUtime
betweenthe processesitismanaging. Inthiscaseitisthe X server,cornmunicalJonsfunctions,
andLISP. LISPalsoallowsmultipletasksto berunconcurrently.LISPalsousesa time-slicing
mechanismasdoesUNIX. ThuswecanseethatasmoreprocessesarerununderLISP,theamountof
timeeachprocessgetsoftheCPUdminishesasa functionofLISPANDUNIXtime-slicing.
Animportantoptionistomovethedatacollectionand userinterfaceprocessestotheUNIXenvironment
inC functions.Thisoptionthenallowsa singlelevelof time-slicingfor thedatacollectionanduser-
interfaceprocesses,ineffect,allowinggreaterthroughputinthesetasks. I, personally,believethat
theSolbournecan handlethetasksif implementedinthismannerasopposedtoeverythingrunning
underLISP. KNOMAD,howeverneedsto stayinthe LISPenvironment.
Anothercommentabouttheuser-interfaceisthatiftheuserinterfacefunctionsweremovedto
theUNIXenvironmentasC functions,theextratwolayersofabslmction(CommonWindowsandCLX)
wouldbe eliminated.Thishasthe potentialof significantlyspeedingupthe userinterface(andtherefore
alsoallowingmorefunctionstobe easilysupportedat the userinterface).

DC/STAR TOPOLOGY
2-4

DC/STARTOPOLOGY ..

Interim
Final Report

VolumeII
MCR-89-516

July 1990

LLP Receiver

Start

fault msg
'7

N

reply
'7

N

queue up
message

notify q-status-
reply-event of
lip

contingency
processing
= true

send
contingency
start

gather-data
and start-
diagnosis

I
timeout
process

Figure 2.2-2 FRAMES handling of LLP Input

DC/STAR TOPOLOGY
2-5

DC/STAR TOPOLOGY

Interim

Final Report
Volume II

MCR-89-516
Julv 1990

Gather Data

all-II_x_=
available-lips

I
[=que enti
query? = true [

I
ForEach all-Itps]
wait for its *switch,I
data-event* or a |
m_x of_:_ec_. I

FIFO

output

,,_ I I I Iqieii

If we time out it means some lip
did not respond as it should have. At
this pointwe can check to see if that lip
is important to the symptoms we have so far.
If it iswe may want to indicatethisproblem
to the user, otherwise we may try the
diagnosis anyway.

V

V

query? = false

Symptom-set =
_dp-data of all
lips.

Reset trip-data
of al_-ltOs

Figure 2.2-3 FRAMES Gather Data Process Flow

DC/STAR TOPOLOGY
2-6

DC/STAR TOPOLOGY

Interim

Final Report
Volume II

MCR-89-516

July 1990

Gather Data and Start Diagnosis

Symptom-set =
Get-snapshot

Assed
Symptom-Set
to Database

N

Figure 2.2-4 FRAMES Isolation of Symptom Sets

--_ / DC/STAR TOPOLOGY
2-7

DCISTAR TOPOLOGY

Interim

Final Report
Volume II

MCR- 89-516

July 1990

V

Get Snapshot

Start

q-status
msg to all

FIFO

output
queue

_- 1111111

l ait for q-status Ireplies

I
m_ to lips

FIFO

output
queue

I!i!111

l collect data

Y

Symptom-set -

:_trip-dataof all
lips.

I
J sena any

sheds and
redundants

Figure 2.2-6 Snapshot Data from LLPs to FRAMES

DC/STAR TOPOLOGY
2-8

DCISTAR TOPOLOGY

Interim

Final Report
Volume II

MCR- 89-516

Suly 1990

\

Process Switch Status

current, voltage, etc.
collectshed switches
collectswitchedtoredundant switches
collect tripped switches

y N

storeshedsand
redundants

/co Y
notifydataevent
of lip

send
contingency
start

send
sheds and
redundants

I
send
contingency
end

Figure 2.2-6 FRAMES Processing of Switch Status Information

DC/STAR TOPOLOGY
2-9

DC/STAR TOPOLOGY

Interim

Final Report
Volume II

Flip Switches

Send flip
commands

FIFO
Output
Queue

MCR-89-516

July 1990

V

get-snapshot

Figure

Figure

2.2-7

PMAX

P MIN

2.2-8

FRAMES Commanding Switch_-

W

to t_

Pdo_les
>1

Priorities
=1

t

Load Profiles of 1 minute granularity for 2 buses
Priority Profiles as Updated for 2 buses *

PMIN (Minimum power that must be supplied)

PMAX (Maximum power that can be supplied)

* Pdority profiles are provided on a per prioritybasis.

The SSM/PMAD Power Profiling Configuration

DC/STAR TOPOLOGY
2-10

DC/STAR TOPOLOGY

Interim

Final Report
Volume II

MCR-89-516

July 1990

....A

-I
Scheduled Operations

Get Switch / Sensor Data

¢
Convert Switch / Sensor Data

I__
Compute Switch / Sensor Performance

Algorithms

Process Ethemet Input

,,,_ N

"1 I

*21

Process Ethemet Output

1
Lowest Level Processor Main Loop after Initialization

Figure 2.2-9 LLP Main Loop Processing

DC/STAR TOPOLOGY
2-11

DC/$TAR TOPOLOGY

Interim

Final Report
Volume II

MCR-89-516

July 1990

; Any new hard fault on any switch
triggers this if condition.

; Test if New_Fault was set on a
previous pass through this routine.

Convert Raw Sensor Data

Convert Raw Switch Data

I

!
N

I

Reset Quiescent [

Set Message I

Set New_Fault]

Set Quiescent [

Reset New_Fault]

Set Message]

Set Switch Performance Flag]

V

V

*1 : Convert Switch I Sensor Data

Figure 2.2-10 LLP Process Loop *1

DC/STAR TOPOLOGY
2-12

DC/STARTOPOLOGY

@
N

Interim

Final Report
Volume II

Set Sensor State Bit [

Set Message

Set Switch Status flag I

Set Sensor Status flag [

-_ [Set Switch Performance flag [

MCR-89-516

J_lly 1990

ch Reset Switch

XN'b Y - [Ran_ eFlag

N

Reset Switch [Set Switch
RangeFlag]]IRange Flag

; Kirchoff Current Law node summation

I

I

Test for Soft Faults

I

Shed Switch]

Set Message]

Set Switch Status flag]

Set Sensor Status flag I

Set Switch Performance flag [

Return to Main Loop
*2 : Algorithms

Figure 2.2-11 LLP Process Loop *2

DC/STAR TOPOLOGY
2-13

DC/STARTOPOLOGY

Interim
FinalReport

Vol_m¢II
MCR-89-516

July 1990

V

Queries

by LLP

Counting

_==j MAX Time limit

D

r

of Quiescence

Take simultaneous

query waiting for all

"LLPs to be quiescent.

DEFINFUONS:
Quiescent Data - fault status of faulted switches are identical after

two consecutive reads.

End of Fault - data is quiescent within an LLP.
End of Event - data is quiescent in all LLPs simultaneously.
Symptom Set - data gathered from LIPs after an end of event.

QUANTIFIABLE EXPRESSIONS:

E -=Event as reported by the LLPs.
Q = Quiescent State as detected at the LLPs.

= 1 if End of Fault is true or no fault exists;
0 otherwise.

C = fault condition = Q1 • Q2 • Q3 • ... • Qn
Qm <--> last buffered value of QLr_p;

QUIESCENCE CONDITIONS:

QA _0 ff fault scan N * fault scan N- 1;
else, IfE = true then QA <=> 1.

SYMPTOM SET DETERMINATION:

If query response for all Q=I,
then query for initial symptom set and end of events ;

else, C = O.

Figure 2.2-12 Fault Isolation Process and Definitions

DC/STAR TOPOLOGY
2-14

SSM/PMADARCHITECTURE

Interim

Final Report
Volume II

MCR- 89-516

July 1990

3.0 SSM/PMAD AUTOMATION SYSTEM ARCHITECTURE

The automation system architecture has undergone a radical change due to the
introduction of a new hardware workstation, new LLP hardware, and new systems

software. Figure 3-1 shows the old automation system information flow with respect to
systems software. As can be seen, any operation to or from the switchgear hardware
required passage through several different operating environments and communications

systems.

Symbolic [
Genera

I Ethernet

! xr° IInterLISP

I RS 232

VersaDOS

I RS 422

LLP I
PDOS

I RS 422

I Switch IInterface Controller
6800 Native

Figure 3-1 Previous SSM/PMAD Systems Level Architecture

In order to improve the performance of the automation portion of the testbed several
things had to be accomplished. First, the number of hardware interactions to carry out
switchgear operations had to be decreased. Second, one-way bottlenecks in
communications needed to be eliminated. Last, a more streamlined way of handling
automation data functions were to be introduced. The automation system which was

delivered to NASA/MSFC in June accomplished these three goals.

For the new system the number of operating components has been reduced.
Likewise, the communications overhead has been reduced and the protocol has been made
more homogeneous than before. The new architecture for the informational flow of the
testbed is shown in Figure 3-2. Multitasking advantages have been introduced by using the

UNIX operating system at the Solboume workstation. The LLPs function with dedicated
processes which do not need to exercise multitasking within the system. Therefore, they
function as resident processes under MS/DOS using operating system features only as
interfaces to the Ethernet and RS422 drivers. The LLPs are rack-mounted with no

keyboards or monitors.

SSM/PMAD ARCHITE_RE
3-1

SSM/PMADARCHITECTURE

Interim
FinalReport

VolumeII
MCR-89-516

Julv 1990

Symbolic

Genera

DOS

i RS _22
I

I

Switch
Interface Controller

6800 Native

SolbourneuNiX [

Figure 3-2 Present SSM/PMAD Systems Level Architecture

The resulting architectural advantage for the SSM/PMAD system is the co-location
of automation management software (KNOMAD-SSM/PMAD and FRAMES) and multi-
tasking system operational software (UNIX) on Solbourne workstation. Now the central
knowledge and fault management functions within the system can take advantage of the
operating system features which allow the independent processes to be individually
managed.

A new software knowledge management system, KNOMAD, has been introduced
into the SSM/PMAD automation environment. KNOMAD resides on the Solbourne
workstation and manages the rules, objects, and databases associated with the knowledge
agents. This provides a very fertile environment for cooperating expert systems both on
the Soibourne workstation and between agents at the Solbourne and other workstations.
Figure 3-3 depicts the KNOMAD system on the Solbourne workstation.

Rule Management System

Constraint System

Knowledge
Bases FRAMES • • •

Database Interface

Databases

Figure 3-3 The KNOMAD System Within the SSM/PMAD

At this time only the FRAMES knowledge agent executes within the KNOMAD
environment. However, the capability to include LPLMS and FELES currently exists.
The presence of KNOMAD in the SSM/PMAD architecture greatly enhances the
performance of knowledge bases which must interact with the data supplied both to and

SSM/PMAD ARCt-UTECiURE
3-2

SSM/PMAD ARCHITECTURE

Interim

Final Report MCR-89-516
Volume II July 1990

from the LLPs. Perhaps KNOMAD's most important contribution in an architectural sense
is the capability to manage data which affects the performance of knowledge agents in a
near-real-time manner; and, to determine which knowledge agent should respond to events
based upon the changing knowledge and data within the SSM/PMAD system.

The strength of this SSM/PMAD architecture is that new software introductions into
the automation system should show up as enhancements to the existing elements. For
example, a new expert system application would be introduced as a new knowledge agent
within the KNOMAD environment; or, a change to the LLFs would only show up as a
modification to be executed at the LLPs. The architecture is now highly modularized and
changes are isolated to the modular elements.

SSM/PMAD ARCHITECTURE
3-3

V

FRAMES RULES

Interim

Final Report MCR-89-516
Volume II July 1990

4.0 FRAMES RULES ENGLISH REPRESENTATION

The following descriptions are English Language representations for the hard fault
rules (diagnoses rules only; readers are referred to Appendix III for explanation of any
rules used for grouping or control) that were inserted into the FRAMES Knowledge Agent
which executes within the KNOMAD environment.

4.1 Hard Multiple Fault Rules

Rule 2.1 For all tripped switches

IF

THEN
the voltage of the top sensor in the hierarchical group is under-voltage,

diagnose as there is no power to the bus, and
report it to the operator.

Rule 2.2 For all tripped switches

IF

THEN

the fault is under voltage, and
the top sensor voltage is nominal, and
the switch sensor voltage is nominal, and

diagnose as a broken cable between the child sensor and switch, and
report it to the operator.

Rule 2.3 For all tripped switches

IF

THEN

the fault is under voltage, and
the voltage of the parent switch sensor is nominal, and
the voltage of the tripped switch sensor is less than nominal, and
the parent switch can trip but is not,

diagnose as a broken cable below the parent switch, and
report it to the operator.

Rule 2.4 For all tripped switches

IF

THEN

the fault is under voltage, and
tripped switches sensor voltage is less than nominal, and
parent switch is not trippable on under voltage, and
parent switch sensor voltage is nominal, and
the voltage of the parent switch sensor is nominal,

diagnose as the input or output of the switch above is broken, or
the switch itself is broken, and

report it to the operator.

FRAMES RULES
4-I

FRAMESRULES

Interim
FinalReport
VolumeH

MCR-89-516
l_y 1990

Rule 2.5 For all tripped switches

IF

THEN

the fault is under voltage, and
tripped switches sensor voltage is less than nominal, and
parent switch is trippable on under voltage but not tripped, and
parent switch sensor voltage is nominal, and
sensor voltage above the parent switch is less than nominal,

diagnose as broken under voltage sensor in parent switch, and
broken cable above parent switch, and
report it to the operator.

Rule 3.2.3 For all tripped switches

IF

THEN

all symptoms are at the bottom level, and
all are fast trips, and
all switches are not being used by a common activity, and
no switches have permission to test,

take no action, and
notify the operations personnel through the user interface.

Rule 3.2.4 For all tripped switches

IF

THEN

all symptoms are at the bottom level, and
all are fast trips, and
all switches are not being used by a common activity, and
switches have pemaission to test, and after testing
non-isolated symptoms result,

take no action, and

notify the operations personnel through the user interface.

Rule 3.2.5 For all tripped switches

IF

THEN

all symptoms are at the bottom level, and
all are fast trips, and
all switches are not being used by a common activity, and
switches have permission to test, and after testing
no symptoms occur,

take no action, and

notify the operations personnel through the user interface.

V

FRAMES RULES
4-2

FRAMESRULES

Interim

Final Report
Volume 1I

MCR- 89-516

luly 1990

Rule 3.2.6 For all tripped switches

IF

THEN

all symptoms are at the bottom level, and
all are fast trips, and
all switches are not being used by a common activity, and
switches have permission to test, and after testing
a single symptom occurs, and
the symptom is a fast trip, and
the fast trip occurs in one of the same switches,

identify a possible low impedance short below the switch, and
notify the operations personnel through the user interface.

Rule 3.2.7 For all tripped switches

IF

THEN

aLl symptoms are at the bottom level, and
all are fast trips, and
all switches are not being used by a common activity, and
switches have permission to test, and after testing
a single symptom occurs, and
the symptom is not a fast trip, or
the fast trip occurs in not one of the same switches,

identify an unexpected trip that is not presently di.'agnosable, and
notify the operations personnel through the user interface.

Rule 4. through 5. For all nipped switches

IF

THEN

there are multiple symptoms, and
the symptoms are individual,

group the individual symptoms, and
diagnose each individual symptom.

FRAMES RULES
4-3

FRAMESRULES

Interim
Final Report MCR-89-516
VolumeII Julv 1990

4.2 Hard Single Fault Rules

Rule 6.1 through 6.4

Manipulate the switches of interest by opening and flipping the top switch and
collecting symptoms.

Rule 6.5

IF

THEN

there is a single symptom, and
it is from the same switch as before, and

it is the same fault symptom,

form diagnosis on retrip.

Rule 6.6

IF

THEN

there is a single symptom, and
it is not the same fault symptom as before, or
it is not from the same switch as before,

notify the user of an unexpected retrip.

Rule 6.7

IF

THEN

there is no new symptom, and
there are no child switches,

notify the operator that the fault cannot now be repeated, and
it has possibly burned clear.

Rule 6.8

IF

THEN

there is no new symptom, and
there are child switches,

close the top switch in preparation for collecting fault
symptom data from lower switches where permitted.

Rule 6.8.1

IF

THEN
there is a new trip on the top switch,

notify the operator of an unexpected trip.

FRAMES RULES
4-4

FRAMESRULES

Interim
FinalReport MCR-89-516
YQlumeH July 1990

Rule 6.8.2

IF

THEN
thereis nonewtrip on thetopswitch,

it is okto setupchild switchesfor testing.

Rules6.9through6.12isolatetestableswitchesandperformopeningandclosingof those
switches.Parametersusedin diagnosesaresetfrom theseswitchingoperations.

Rule6.13

IF

THEN
thereis morethanonenewtopsymptom,

reportanunexpectednumberof topsymptomsto theoperator.

Rule6.14

IF

THEN

thereis one new top symptom, and
it is the same original fault symptom,

diagnose a sensor masked fault at the tripped child switch, and
report it to the operator.

Rule 6.15

IF

THEN

there is one new top symptom, and
it is not the same fault symptom,

report an unexpected new top symptom to the operator.

Rule 6.16

IF

THEN
there is no new top symptom,

test the child switches by closing them in sequence and proceeding
down into another layer for testing.

Rule 6.17 and 6.18

IF

THEN
there are no new child symptoms,

set the child switches to the union of the children

of the present child symptoms.

t _MES RULES
4-5

FRAMESRULES

Interim

Final Report
Volume II

MCR-89-516

July 1990

Rule 6.19

IF

THEN

there are no child switches, and
there have been switches that are not testable,

diagnose the fault as not found, and
report it to the operator with the qualifier that
some switches were not testable.

Rule 6.20

IF

THEN
there are no more switches to test,

diagnose the fault as not found, and
report it to the operator.

Rule 6.21

IF

THEN
there are lower level switches to test,

set up appropriate variables, and
loop back through 6. level rules.

Rule 6.22

IF

THEN
there are new symptoms as a result of earlier switch closings,

order and group the symptoms, and
get the top symptoms.

Rule 6.23

IF

THEN

there is a top symptom that is the same as the fault symptom, and
the switch is the same as the fault switch,

diagnose the fault as a possible over-current, and
report it to the operator.

Rule 6.24

IF

THEN
there is a top symptom that is not the same as the fault symptom,

diagnose as an unexpected different trip, and
report it to the operator.

FRAMES RULES
4-6

FRAMESRULES

Interim

Final Report
Volume II

MCR-89-516

July 1990

Rule 6.25

IF

THEN
there are multiple new top symptoms,

diagnose as unexpected different multiple trips, and
report it to the operator.

FRAMES RULES
4-7

AppendixI
SSM/PMADInterfaceUserManual

Interim
FinalReport

VolumeII
MCR-89-516

July 1990

APPENDIX I SSM/PMAD INTERFACE USER MANUAL

SSM/PMAD Interface User Manual
I

SSM/PMAD Interface User

Version 1.0

Manual

Joel D. Riedesel

Martin Marietta Space Systems

P.O. Box 179, MS: S-0550

Denver, Co. 80201

jriedesel@den.mmc.com

USER INTERFACE

Interim

Final Report MCR-89-516
Volume II July 1990

5.0 THE SSM/PMAD USER INTERFACE

5.1 The System Environment

The SSM/PMAD user interface gives the operator a method of interacting with the

testbed. The SSM/PMAD interface was designed to be a good user interface satisfying a

number of conditions. First, the user interface is easy to learn and use. The relative

measure of ease increases with the complexity of the task confronting the user. The system

appears homogeneous to the user. Second, it gives encouragement, usually through

enhanced performance and aesthetic value. Third, the SSM/PMAD interface was designed

to not inhibit the performance of a user familiar with the system. Last, the user interface

meets the requirements of the testbed's operation. For a complete description of the

operation of the SSM/PMAD user interface see Appendix I.

5.2 The SSM/PMAD User Interface Definitions

The user interface will be monitored by the application providing access and

suppleness for human interaction. The application may be broken into tasks and functions

which may control parts of the user interface. Moreover, there may be more than one

application requiring a user interface. Also, the user interface may contain a variety of

menus, workboxes, buttons, and graphical items. Before designing a user interface, a

number of terms were defined. These terms may be placed in one of two categories.

5.2.1 CONTROL STRUCTURES

Application -

An object or module which performs a complex service or action used to

accomplish some major objective.

Task -

A working component of an application.

Function -

A small operation which has a specific goal and is part of some task.

USER INTERFACE
5-1

USER INTERFACE

5.2.2

Interim

Final Report
Volume II

USER INTERFACE ITEMS

MCR-89-516

July 1990

V

Window -

Rectangular region on the screen which is owned and managed by an

application, task, or function requiring screen I/O. In an automobile, the

speedometer and tachometer would be analogous to a window on a

computer screen in that they provide the driver with visual feedback on the

performance of the engine.

Menu -

Selection list owned by an application, task, or function. In an automobile,

there are many buttons on the dashboard controlling such things as

windshield wipers, lights, and the radio. All of these choices could be

considered as menu selection possibilities for specific functions of an

automobile's user interface.

Workbox -

Temporary window owned by an application, task, or function. A

workbox differs from the owning window in that it services a particular

need or set of needs within the owning window and does not represent the

complete environment. Also, a workbox, due to its nature, possesses only

a limited set of user oriented information. For example, in some

automobiles, the engine has a computer control mechanism which will turn

on a light when the computer believes that it is time for the driver to shift

gears. This right stays on until the driver actually does shift gears. Because

of the temporary nature of the shift light, it could be considered as workbox

in the automobile's user interface.

Buttons -

Single function screen items selectable by a single mouse crick.

USER
5-2

USERINTERFACE

Interim
FinalReport

VolumeII
MCR-89-516

,l_lly 1990

GraphicalItems-
Imageswhicharefoundin a windowon theinterfacescreen.
classifiedasoneof thefollowing:

Theymaybe

Icons-
Itemswith onealternaterepresentation. There is no analogy

for this item in terms of an automobile's user interface. In

our present SSM/PMAD system, any load center may be

represented on the FRAMES user interface as a small box

showing none of the switches or loads. Under normal

circumstances, this representation is not used, but a user

might switch to this representation to make the interface

easier to read.

Static Representations -

Items not affected by user interaction. For instance, in an

automobile, the numbers painted on an analog speedometer

are for reference and are therefore static to the user.

Dynamic Representations -

Items the user may change, move, or otherwise interact

with. Although the numbers painted on an analog

speedometer in an automobile axe static representations, the

needle which points at them is a dynamic representation.

The needle position is directly related to the velocity of the

automobile, and is controllable by the user through the user

interface.

5.3 Color in the SSM/PMAD User Interface

The addition of color in the SSM/PMAD user interface is instrumental in providing

information. Color coding of the switch icons is used to inform the user of the situation on

USER INTERFACE
5-3

USER INTERFAC_

Interim

Final Report MCR-89-516
Vglume II July 1990

a bus within a given load center. The user who wishes to manually power a given load or

obtain system information during automated operation sees the following color coded

switch icons:

RED-

This switch is Iripped.

GREEN -

This switch is usable.

V

BLACK -

This switch is presently out of service.

By using this color coding scheme, the user is able to "drive" the user interface and

with the knowledge provided by the colors have confidence in the system results.

Continuing work on the SSM/PMAD interface will provide a more robust and easily

understood environment for the testbed operator.

=:: 7 :: : :: :

........ I

USER INTERFACE
5-4

Interim
FinalReport MCR-89-516

FUTURE Volum_ II July 1990

6.0 SSM/PMAD FUTURE DIRECTIONS

6.1 SSM/PMAD Testbed Needs

The technology of the SSM/PMAD testbed should be made available to complex

spacecraft development programs. As well, the testbed technology itself should be

upgraded to better support the known needs of such programs as the Space Station

Freedom and its derivative programs.

6.1 SSM/PMAD Testbed Goals

Accomplishing the testbed needs suggests the following six future efforts as goals

for the automation capability of the SSM/PMAD testbed.

First, the user interface should be incrementally improved to the next level of

operational capability. This would introduce all new functionality as well as expand and

enhance the existing functionality.

Next, a planning agent should be introduced and the incremental autonomy

manager should be developed. This would give the operator access to system resources

without demanding that the user assume full operational control. It would also serve to

minimize impacts to already scheduled operation on the automation list.

Third, the LLP software should be rewritten in Ada, and as many of the FRAMES

functions as possible should be rehosted to that level, taking advantage of the functionality

provided by Ada.

Next, the LPLMS and FELES should be placed into the KNOMAD environment to

make the user interface functions more completely homogeneous. This would also take

advantage of the parallel management structure allowed by KNOMAD and would provide a

more complete structure in the sense of cooperating expert systems.

Fifth, there should be a two-tiered explanation facility introduced into the

SSM/PMAD. The first tier would explain the processes within the KNOMAD knowledge

FUTURE
6-1

Interim
FinalReport MCR-89-516

F_Rt_ Volume II lulv 1990

management environment. The second uer would provide mformataon on_flae system inter-

process interactions, giving the operator a sense of what the overall system is doing.

Sixth, the KNOMAD system should be enhanced to mix the forward and backward

reasoning processes in an automated fashion. This would alleviate knowledge engineering

personnel from having to manually determine complete knowledge processing strategies

ahead of time.

FUTURE
6-2

Appendix I
SSM/PMAD Interface UserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

Contents

1 Purpose of this Manual

1.1 Acronyms and Definitions

2 Installation of FRAMES on the Solbourne

2.1 Loading the Software

2.2 Changing the X server

2.3 Editing the hosts File

2.4 Copying the Initialization Files

2.5 Creating an LLP Software Disk

3 Breadboard Tutorial

3.1 The Power System
3.1.1 Breadboard Power

3.1.2 Starting the LLPs

3.1.3 Shutting Down the Power System

3.2 The Symbolics

3.3 The SSM/PMAD Interface

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

Starting the SSM/PMAD Interface

Initializing FRAMES

Manually Operating the Breadboard

Getting Information from the Hardware

Autonomously Operating the Breadboard

Stopping FRAMES

Shutting Down the SSM/PMAD Interface

4 The

4.1

4.2

4.3

4

4

5

5

5

6

7

8

8

8

8

8

9

10

10

12

12

13

14

14

SSM/PMAD Breadboard 15

SSM/PMAD Breadboard Theory of Operation 15

4.i.1 The SSM/PMAD Goal 15

4.1.2 Hardware and Software Functional Division 16

4.1.3 Manual System Operation 18

4.1.4 Autonomous System Operation 20

The FRAMES Knowledge Base 22

4.2.1 The FRAMES Architecture 22

4.2.2 The FRAMES Expert Systems 24

4.2.3 Multiple Faults in SSM/PMAD 24

The SSM/PMAD Interface, in Detail 25
4.3.1 The Screen 25

4.3.2 The Menu Functions 30

SSM/PMAD Interface User Manual

I-ii

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

4.3.3 The PowerSystemComponents'Functions 51

A Known Bugs 58

SSM/PMAD InterfaceUserManual

I-iii

AppendixI
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

",,._j

List of Figures

1 SSM/PMAD Breadboard HW/SW Configuration 18

2 The SSM/PMAD Interface 26

3 The SSM/PMAD Interface with LLPs 27

4 The Initial SSM/PMAD Interface 28

5 Example One-line Information Message 31
6 The KNOMAD Menu 32

7 The KNOMAD Help Window 32
8 The Utilities Menu 33

9 The Communications Menu 33

i0 The Utilities Help Window 34

11 The Communications Help Window 34

12 The Communications Windows 36

13 A Prompt Window for Displaying a Transaction 37
14 A FRAMES Transaction 37

15 Closing a Communications Connection 38

16 The Summary Menu 39

17 The Switchgear Summary Menu 40

18 The Power Utilization Options Menu 40

19 The Schedule Options Menu 41

20 The Summary Help Window 41

21 The Switchgear Summary Help Window 42

22 The Power Utilization Help Window 42

23 The Schedule Help Window 43

24 The Initialize Menu 44

25 The Initialization Options Menu 44

26 The Initialize Help Window 45

27 The FRAMES Initialization Help Window 45
28 The Other Initialize Menu 46

29 The Help Menu 47

30 The LLPs Help Window 48

31 The RPCs Help Window 48

32 The Loads Help Window 49

33 The Sensors Help Window 49

34 The Cables Help Window 50

35 The Mouse Cursor Help Window 50

36 The Main Menu Help Window 51

37 The Display Windows Help Window 52

38 An LLP Menu 53

\v,. _

SSM/PMAD Interface User Manual

I-iv

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-S9-516

Volume II July 1990

39 An RPC Menu 53

40 A Sensor Menu 54

41 A Cable Menu 55

42 A Load Menu 55

43 Switch Data 56

44 Sensor Data 56

45 Load Data 56

SSM/PMAD Interface User Manual

I-V

V

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516
Volume II July 1990

v

1 Purpose of this Manual

The purpose of this manual is to give the user instructions and guidance in the general

operation of the breadboard and specifically operation of FRAMES on the Solbourne. The

Solbourne provides the primary user-interface for the operation of the SSM/PMAD bread-

board known as the SSM/PMAD Interface. This interface will be the primary focus of the

user manual.

The manual is organized into four sections. Section two describes the installation of the

SSM/PMAD interface and FRAMES on the Solbourne. Section three provides a tutorial

overview of the SSM/PMAD breadboard. The fourth section is the main part of the user

manual and provides the user with the necessary detail for operating the SSM/PMAD inter-

face. It also provides a fairly detailed description and theory of operation of the breadboard

and FRAMES diagnostic system.
The rest of this section defines the acronyms and some brief definitions that are used

throughout this manual.

1.1 Acronyms and Definitions

AI Artificial Intelligence. The field of Computer Science studying aspects of human intelli-

gence and how they can be implemented on a computer.

CLOS Common LISP Object System. An object-oriented programmming framework for

Common LISP.

FELES Front End Load Enable Scheduler.

FRAMES Fault Recovery And Management System. FRAMES is logically defined to

exist on both the Solbourne and the LLPS. Both of these parts of SSM/PMAD play

an important rule in detecting, diagnosing and recovering from power system faults.

GC Generic Controller. An element of the hardware of the SSM/PMAD breadboard for

interfacing to and controlling RPCs.

H/W Hardware. The SSM/PMAD breadboard hardware components.

ICD Interface Control Document.

KHz KiloHertz.

KNOMAD-SSM/PMAD Knowledge Mangement and Design Environment applied to

the SSM/PMAD domain.

SSM/PMAD Interface User Manual

I-1

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

LC Load Center. An element of the SSM/PMAD breadboard where loads may be connected

to 1K-RPCs.

LISP List Processing. The programming language of choice for developing complex software

systems utilizing AI technology.

LLP Lower Level Processor. A computer system for controlling LCs or PDCUs.

LPL Load Priority List. The load priority list is used to determine which loads are more

important than others in the event of power system contingencies.

LPLMS Load Priority List Management System. The expert system for creating the load

priority list from a schedule.

MAESTRO Master of Automated Expert Scheduling Through Resource Orchestration.

The scheduling system for scheduling activities making efficient use of resources, in-

cluding power.

MSFC Marshall Space Flight Center.

NASA National Aeronautics and Space Administration.

PDCU Power Distribution Control Unit. A power distribution unit of the SSM/PMAD
hardware.

RBI Remote Bus Isolator. A remotely controllable relay for carrying large amounts of power

(e.g. 15KW).

RCCB Remote Control Circuit Breaker. A relatively smart switch for switching 10KW of

power.

RPC Remote Power Controller. An smart switch that may switch either 3KW or 1KW of

power.

RS-423 Electronic Industries Associates RS standard for communications. The RS-423 is

used for communications between the LLPs and the SICs.

SI Symbolics Interface. The interface for defining schedules for the SSM/PMAD bread-

board.

SIC Switchgear Interface Controller. The element of the hardware for interfacing to a bus

of switches. In the case of a PDCU, it controls all the switches (only one bus in a

PDCU).

SSM Space Station Module. Ask NASA.

V

V

SSM/PMAD Interface User Manual

I-2

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July I990

SSM/PMAD SpaceStation ModulePowerManagementAnd Distribution. A testbed for
trying andevaluatingmechanismsfor autonomouslyand manuallyoperating the power
systemfor SpaceStation Freedom.

S/W Software. Those elementsof the SSM/PMAD breadboard functions that are not
hardware.

TCP/IP Transport Control Protocol / Internet Protocol. The communications medium

used between the LLPs, the Solbourne and the Symbolics.

UI User Interface. The place where the user interacts with the SSM/PMAD breadboard.

VCLR Visual Control Logic Representation. A means for representing and documenting

the logical flow of an algorithm.

SSM/PMAD Interface User Manual

I-3

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

2 Installation of FRAMES on the Solbourne

This section describes the installation of FRAMES and the SSM/PMAD interface on the

Solbourne. This includes a subsection on installing the LLP software. Installing the schedul-

ing software on the Symbolics is discussed elsewhere. The installation of FRAMES involves

loading the requisite software onto the Solbourne and copying the necessary initialization

files into the user account. This installation assumes that the Solbourne is installed and

running in a normal network environment and that X windows is installed. The only actual

change that will be necessary to make to the existing installation of the X windows software

on the Solbourne is to change the X server to one provided by FRANZ, Inc. It will also be

necessary to add a keyword to the hosts file to let the FRAMES system know where the
scheduler is located.

2.1 Loading the Software

The FRAMES software distribution includes K _ o Mn D-S SM / P MAD, GNU emacs, q__/X, pbm-

plus, and the FRANZ, Inc. X server as well as Franz's Allegro Common LISP 1. The software

distribution is located in the/usr/local directory. To load the software you must become

root or have your system administrator read this and load it for you.

To load the software insert the distribution tape in the local tape drive and perform the

following steps where '7) is the unix prompt:

1. Z cd /usr/local

2. _ mt -f /dev/rst8 few

3. Z tar -xvf /dev/rst8

1A few caveats and legal disclaimers are in order here. This installation procedure is provided by Martin
Marietta Astronautics Group under contract NAS8-36433 to NASA, Marshall Space Flight Center. The
installation of the software is accompanied by the delivery of a Solbourne 5/501 computer owned by NASA.
It assumes a generic setup of the Solbourne that includes a 60 MB swap partition and approximately 50 MB
free space for the/usr/local partition.

NASA has bought two Solbourne 5/501 computers under contract NAS8-36433. Each has a license for
Franz's Allegro Common LISP and Common Windows on X. This installation includes the Allegro Common
LISP that is licensed to NASA on their Solbourne 5/501 computers, it includes FRAMES and KNOMAD-
SSM/PMAD, developed by Martin Marietta, GNU emacs (GNU stands for GNU's Not Unix and is copylefted
by the Free Software Foundation, available to anyone free), TEX(this version is tex82 developed by Donald
Knuth), and pbmplus. The X server provided by Franz, Inc. as part of this distribution is the public domain
X server (Version 11 Release 3) as distributed by MIT. Of these installed items only TEX is not necessary
and is provided as a convenience. Pbmplus is a public domain set of programs for converting between
various picture formats such as GIF, SUN Raster, X, bitmap, etc. Pbmplus is in the public domain and was
developed by Jef Poskanzer.

SSM/PMAD Interface User Manual

I-4

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

2.2 Changing the X server

The next step is to change the X server. First you must become root.

following steps:

i. 7. cd /usr/bin/Xll

2. Z rmX

3. % in -s /usr/local/bin/Xsun /usrlbin/Xll/X

Then perform the

'x._../

2.3 Editing the hosts File

The next step is to edit the /etc/hosts file on the Solbourne.

steps should be performed:

°

.

.

4. Finally, type ZZ.

While root the following

Z vi /etc/hosts

Move the cursor to the linewhere the symbolics on which MAESTRO isto be run is

defined. This can be done by using j to move down a linein the fileand k to move up.

Next type A maestro<esc>, where <esc> isthe escape key.

2.4 Copying the Initialization Files

The final step to installing the software is to install the initialization files into your user

account and edit your .cshrc file. At this point you should no longer bc using the root

account. The installation of the initialization files will install .clinit.cl, .xinitrc, and

.twmrc into your home directory. If you already have some of these files, you may want

to save them to another name and merge them together with the newly installed files.

However, you should probably understand exactly what the commands in these files are

doing in relationship to operating FRAMES before you do this. This is described in more

detail in the technical reference section.

As yourself, type the following commands:

l.%cd

2. Z cp /usr/local/knomad/..?*

3. Z vi .cshrc

4. O

SSM/PMAD Interface User Manual

I-5

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

5. setenv DISPLAY unix:O

6. ZZ

7. _ source .cshrc

V

2.5 Creating an LLP Software Disk

Creating a new LLP software disk is easy. First, you take the LLP executable disk (part

of the SSM/PMAD delivery) and make a discopy of it onto a blank 1.2 MByte floppy disk.

This is done by typing (at the DOS prompt of the LLP computer):

diskcopy A: A: <cr>

The computer will respond by prompting for either the SOURCE disk or the TARGET disk.

The SOURCE disk is the LLP executable disk. The TARGET disk is the new, unitialized

disk. The computer will repeatedly prompt for one disk or the other until the copy is

completed.

Once the copy is made, the LLP executable disk is no longer needed. All that is required

is to give the new LLP software disk an appropriate host table. Make sure the new LLP

software disk is in drive A. The following command will move the proper host table to where

it is required for normal operations for LLP B:

copy A:\tables\hosts.B A:\cmcnet\hosts <cr>

For LLP C the command is the same except the first argument of the copy command is

A:\tables\hosts.C, the argument for LLP A is A:\tables\hosts.A, and so forth. Once

the host table is in place, the new LLP software disk is ready for operation.

HI-_ ,,i.i iiiiii f i i i

SSM/PMAD Interface User Manual

I-6

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

3 Breadboard Tutorial

This section describes the operation of the SSM/PMAD breadboard as a tutorial. The

breadboard may be operated in one of two exclusive modes, manual or autonomous. Manual

mode means that the user is monitoring the power system and opening and closing switches

manually. In autonomous mode a schedule of switch operations is prepared in advance and

used for controlling the power system without operator intervention. If a switch is tripped

for some reason (because of a short or under voltage situation for example) the user will be

notified of it in either mode via the user interface on the Solbourne. In autonomous mode,

however, the fault will be diagnosed and a contingency schedule prepared for continued

operations.

Another aspect of operating the SSM/PMAD breadboard is the interaction the user must

undertake to setup each of the system elements for either manual or autonomous operation.

This section of the manual describes how to start each element of the SSM/PMAD

breadboard. It does not address the power system hardware and supporting rack power.

It does include turning on the power to the breadboard and the LLPs _. The operation of

the SSM/PMAD interface on the Solbourne is discussed in detail. The operation of the

Symbolics computer is only briefly described. It is understood that the user has reference to

other documentation describing how to install the software on the Symbolics, bring up the

MAESTRO scheduler, and define a schedule (see [1]).

This section is divided into three parts. The first describes the procedure for starting the

power system and the LLPs. The second describes the procedure for starting MAESTRO

and defining an initial schedule. The third part describes the operation of SSM/PMAD

system from the Solbourne interface. The third section is the most important in terms of

operating the SSM/PMAD breadboard.

To operate the SSM/PMAD breadboard it is recommended that the operator bring up the

system in the order given here, that is, the power system, then MAESTRO and a schedule,

and finally the Solbourne interface. If only manual mode is to be used, starting the Symbolics

may be disregarded. This procedure is not strictly necessary, and experienced operators will

have a better understanding of the various dependencies built into the SSM/PMAD bread-

board, either from usage or from reading the technical reference manual. However, for easy

2The power of the SSM/PMAD breadboard is a very confusing concept, as is the hardware. When I speak
of hardware in this document I mean the actual hardware for RPC's, GC's, SIC's, A/D's and supporting
power for controlling that hardware. If I am speaking of the hardware that makes up one of the computers--
an LLP, the Solbourne, or the Symbolics--the reference will either be clear from the context or specifically
indicated. Similarly, power is ambiguous. I am not concerned with the necessary power for operating the
computers, this is assumed. There are two other aspects of power in the SSM/PMAD breadboard: One is
the main power used by the SSM/PMAD breadboard to supply power to loads as scheduled by either the
user or MAESTRO. The other source of power is that necessary to operate the hardware of the breadboard.
This second source is exactly analogous to the power used to operate the computers and is also assumed in
this manual.

"...__//
SSM/PMAD Interface User Manual

I-7

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

and straightforward use, with as few problems as possible, this sequence is recommended.

3.1 The Power System

The power system aspect of the SSM/PMAD breadboard is probably the simplest component

to operate. There are two important steps to starting the power system. The first step is to

turn on the power to the SSM/PMAD breadboard. The second step is to turn on the the

LLPs that will be operated. It is assumed that all the wiring of the breadboard is correct

and that the cabling of the LLPs and power system hardware is correct.

3.1.1 Breadboard Power

Turning on the power to the SSM/PMAD breadboard is site dependent. The only substantial

requirement is that 120 Volt DC power be supplied to each bus that will be operated. For

bus A (controlled by PDCU A), 120 Volt DC power should be supplied to the RBI of PDCU

A. Similarly for bus B.

3.1.2 Starting the LLPs

When operating the SSM/PMAD breadboard it is important to consider which LLPs are

intended to be a part of the running system. In particular, it is important to decide which

PDCUs will be operated. The particular load centers are easy to add later. For ease of use

though it is a good idea to decide which ones will be used up from the start and turn them
all on.

To start them simply confirm that the proper system disk is in each LLP (in other words,

the system disk for LLP A should be in LLP A). Then turn the LLP on and let it boot.

It is possible to add an LLP to the=already operating system (while in manual mode) if
the new LLP is a load center. All that has to be done is simply turn it on. The FRAMES

software will recoghize the new LLP. If you desire to add a first or second PDCU it is

recommended that you first stop FRAMES on the SSM/PMAD interface and then reinitialize

it appropriately using the interface.

3.1.3 Shutting Down the Power System

Unless there is some reason not to turn off the power system, it can be shutdown by simply

turning off the LLPs and the power to the breadboard.

3.2 The Symbolics

The operation of the Symbolics is technically very difficult. However, this manual assumes

the user is a competent Symbolics user and knows how to bring up the MAESTRO software,

SSM/PMAD Interface User Manual
%.J

I-8

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

or hasdoneso already.
The Symbolicsis usedto operatethe SSM/PMAD breadboardin an autonomousmode

of operation. It is responsiblefor generatinga scheduleof switchoperationsthat enablea set
of activities to be executed. When a contingency occurs, the scheduling software is capable

of rescheduling the activities around the faulted area of the power system, possibly deleting

some activities and adding others. The goal of the scheduling software, MAESTRO, is to

use the available resources, power being a primary resource, in a very efficient manner.

In this version of the SSM/PMAD breadboard system that includes the lower level

FRAMES functions (the LLPs), FRAMES, MAESTRO, FELES, and LPLMS, the user

of the SSM/PMAD breadboard is responsible for generating the set of activities and the

schedule for autonomous operation. The Symbolics interface must then be manually started

by the start menu function on the console screen or by the <meta>-s keystroke sequence.

This tells the scheduling software that it is now ready for autonomous operation and should

wait for an initial ready message from the SSM/PMAD interface.

When operating the SSM/PMAD breadboard and moving between manual and au-

tonomous modes of operation, the user must make sure to start and stop (kill) the scheduler

software on the Symbolics each time autonomous mode is entered and exited. Thus, when

starting the Symbolics, one starts the scheduling software. Autonomous mode is then en-

tered on the SSM/PMAD interface. When the user then enters manual mode again on the

SSM/PMAD interface, the scheduling software should be stopped (by choosing the kill

menu option from the console screen or by typing the <meta>-k key sequence). Then, if

the user desires to enter autonomous mode again, the schedule on the Symbolics should be

prepared fresh and started again.

In general, for Version 1.0 of the SSM/PMAD breadboard, the operation of the Symbolics

should follow the sequence: prepare schedule-start scheduler-stop scheduler.

3.3 The SSM/PMAD Interface

In this section the main interface to the SSM/PMAD breadboard, hereafter referred to as

the SSM/PMAD interface, will be described. The description will be from the perspective

of general operation of the breadboard, in both a manual and autonomous mode of oper-

ation. This will include initializing the FRAMES system (and thereby, the SSM/PMAD

breadboard), manually operating the breadboard switches, moving between manual and au-

tonomous modes of operation, and stopping the FRAMES system (enabling the user to

subsequently shutdown the system). Getting information from switches and sensors will

also be described. A detailed description of the SSM/PMAD interface will be given in

the SSM/PMAD Breadboard section of this manual which will describe some of the more

advanced functions that FRAMES is capable of as well as advanced features of the interface.

SSM/PMAD Interface User Manual

I-9

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

3.3.1 Starting the SSM/PMAD Interface

Starting the SSM/PMAD interface is very easy. It involves starting X windows, LISP,

loading the programs and running the software. This sounds fairly complex, and an advanced

developer will want to understand how these various parts are important to operating the

interface, however, this procedure has been automated for the average user by using the
mechanism of initialization files.

To start the SSM/PMAD interface the user should perform the following two steps:

1. Login to the Solbourne.

2. Type ssmpmad at the UNIX prompt.

The second step will start X windows and the TWM window manager. The X initial-

ization file will start LISP. The LISP initialization file will automatically load and start the

SSM/PMAD interface.

When the interface has been started the user will be notified by a message in the FRAMES

status messages window. The message will state that FRAMES is ready to be initialized.

This means that the interface has been loaded but is not initialized and not running in the

context of the SSM/PMAD breadboard. The next step is to initialize FRAMES.

As with any window that gets popped up on the SSM/PMAD interface display, the

FRAMES status messages window may be hidden from view by clicking the right mouse

button while the mouse is positioned in the title bar of the window (the mouse cursor will

change to a target cursor). Pop-up windows are generally used for displaying information

about the SSM/PMAD breadboard and FRAMES. All pop-up windows may be manipulated

while the mouse is positioned in the title bar (some pop-up windows may be manipulated

while the mouse is in the window itself). Each mouse button has an associated action for

the window. The left mouse button is used to both raise a partially exposed window to the

top of the screen as well as update the information displayed in the window, if appropriate.

The middle mouse button, when held down, allows the user to move the window about the

screen. And the right mouse button, as mentioned above, allows the user to hide or close the

window as appropriate. The windows will be discussed in more detail in the SSM/PMAD

Breadboard section and, as appropriate, in this section for operating the breadboard.

3.3.2 Initializing FRAMES

Once the SSM/PMAD interface is loaded and running, all the parts of the user interface are

in existence and usable. However most are not accessible until FRAMES has been initialized.

When first starting the SSM/PMAD breadboard, FRAMES must be initialized. There-

after it is not necessary to initialize it again unless FRAMES has been stopped. Initializing

FRAMES starts all the necessary software on the Solbourne for manually and autonomously

operating the breadboard. This includes starting the necessary communications processes,

SSM/PMAD interface User Manual

1-10

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

"x._.j

initializing the state of the power domain model, initializing the LLPs as necessary, and

starting any necessary supporting processes and expert systems.

To initialize FRAMES the user will select the appropriate initialize option from the

initialization menu. The breadboard may be initialized in four ways: with power to both

buses, only to bus A, only to bus B, and to no buses. This allows the user to be selective

about how much of the power system is intended to be operated. This is important for both

manual and autonomous operations. It is recommended that the user initializes the system

with both buses by default. This will insure that the SSM/PMAD interface thinks that

power is being supplied to both buses. If the user then manually operates switches, the user

interface will correctly display the state of power through the cables to the switches.

There are four major operations related to the initialization of FRAMES. These are (1)

initialize, (2) autonomous mode (3) manual mode, and (4) stopping FRAMES. Operation (1)

is exclusive with operations (2), (3), and (4). This means that if FRAMES is not initialized

the user may only initialize it (or exit). Once FRAMES is initialized either operation (2)

or (3) is enabled along with operation (4). In other words, operations (2) and (3) are

also mutually exclusive. The breadboard may be operated in either manual or autonomous

mode. When FRAMES is initialized, the user is put into manual mode. The option to

enter autonomous mode will be the first choice the user will see. After entering autonomous

mode the option to go back to manual mode will be enabled. At any time after initializing

FRAMES the user may elect to stop FRAMES and therefore also stop the SSM/PMAD
interface.

Finally, to be specific about how to initialize FRAMES the following steps should be
executed:

1. Position the mouse over the initialize menu option on the SSM/PMAD interface.

. The mouse cursor should take the shape of an 'X'. This signifies that when any mouse

button is pressed an action will occur. The user should hold down any mouse button

to bring up a menu of initialization options.

. The user should then drag the mouse over the initialize FRAMES option and pull it

right--off the right end of the menu. This will bring up a sub-menu of the initialization

options.

4. The user should then position the mouse cursor over the option for initializing both
buses and release the mouse.

When the appropriate initialization option has been selected a message indicating that

FRAMES is being initialized will be displayed in the FRAMES status messages window.

When FRAMES has finished initializing the FRAMES status messages window will display

a message indicating that FRAMES is initialized and the user is in manual mode. The user

may then proceed to manually operate the breadboard.

SSM/PMAD Interface User Manual

1-11

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

V
3.3.3 Manually Operating the Breadboard

At this point the SSM/PMAD breadboard is operating in manual mode. The necessary

FRAMES processes are running and the user may proceed to manually manipulate the

switches. However, there may not be any LLPs present on the user interface with switches

to manipulate.

If the LLPs were started before starting the SSM/PMAD interface, then as soon as
FRAMES is initialized the user will be notified that those LLPs that were started have initi-

ated connections to Solbourne. The LLPs that have initiated connections will be represented

on the interface. Any switches that are not available will be subsequently erased from the

interface as soon as the LLP notifies FRAMES of their configuration.

If the LLPs have not yet been started then it is appropriate to do so at this time.

When LLPS and switches are represented on the interface, the user may manipulate the

switches. To command a switch on or off the the user positions the mouse over the switch to

be commanded. Any mouse button may then be held down to bring up a menu of options.

At this time only two options are of interest; these are the command on and command off

options. To command the switch on simply position the mouse over the command on option

and release the mouse. Shortly thereafter the user should see that the switch has been

commanded on by the switch turning a solid green color on the interface. Any reflection of
the hardware should also be obvious at this time. To command a switch off the user has

only to select the command off option.

Another feature the user has access to when manipulating the switches is that if the user

is interested in turning on a lower switch, say switch C05 and if the 3k-RPC above it (in

this case A03) is not already on, then if the user simply commands on switch C05, k,03 will

automatically be turned on as well. This provides the user with more power for operating

the breadboard. There are less actions that have to be taken by the user in order to produce

the desired result. This feature is also enabled for turning switches off. If the user elects to

turn off an upper level switch which has switches below it on, those lower switches will be

turned off first, automatically.

3.3.4 Getting Information from the Hardware

The user will undoubtedly have noticed that switch information may be selected as an option

when viewing the menu of switch actions. The menu of switch actions that the user brings

up by holding down the mouse button on a switch allows the user to get information from

a switch in a variety of formats.

The user may also bring up a menu of options for getting information from a sensor or

a cable (which simply gets information from the closest sensor above it) as well as an LLP

(however, the LLP information functions are not currently implemented in Version 1.0).

For switches, the user has the option of getting normal switch information which includes

the switch's state, the current going through it, if it is tripped (and how) and a couple other

SSM/PMAD Interface User Manual

1-12

Appendix I
SSM/PMAD Interface UserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

items. This is the normal switchdata information option. It will bring up a pop-up display
window. Clicking left on the title bar of thewindow will causethe information to beupdated
to new breadboardvalues.The detailedswitch data option popsup a window that displays
which bits areset in the status word of a switch. This is detailed data about the switches that

is more useful to a system developer. Both of these functions are implemented by actually

querying the LLP for new data to display whenever the information is requested from the

SSM/PMAD interface. There is one further option the user may choose--the continuous

switch information option. This option will cause a pop-up window to be displayed that

displays the same data as the normal switch data option displays. However, this window

will be continuously updated with new data from the LLP about the switch for every pass

the LLP makes through its operation loop. This option should be used with care. It is quite

possibly to overload the SSM/PMAD breadboard with network traffic and data processing

simply to accommodate continuous switch information on a number of switches and sensors.

The user may similarly get information from sensors and loads. For sensors the user will

be able to monitor the current and voltage of the sensor. For a load the user will only be

able to monitor if it is powered or not.

3.3.5 Autonomously Operating the Breadboard

To operate the SSM/PMAD breadboard in autonomous mode the user simply has to select

the autonomous mode option from the initialization menu of the SSM/PMAD interface.

This option, once selected, wil! cause FRAMES to reinitialize the connected LLPs, initiate

a session with the scheduler system on the Symbolics and start the fault diagnosis expert

system.

Entering autonomous mode requires that a schedule be ready on the Symbolics computer

for operating the switches of the breadboard. Initially selecting autonomous mode takes

about one minute for FRAMES to set up for autonomous operations. When FRAMES is

ready and the Symbolics has sent a schedule for autonomous operations to FRAMES, the

user will be prompted to select how long until the start of mission on the SSM/PMAD

interface. In general the user will want to start right away and should therefore position the

mouse over the one minute option and click any mouse button. When this has happened

the user will note that the message that FRAMES is now operating autonomously has been

displayed in the FRAMES status messages window.

At this point the user needs do nothing to operate the breadboard. It will autonomously

operate itself. Switches will be turned on and off according to the schedule as prepared by

MAESTRO. If a fault occurs, the user interface will reflect the status of the breadboard and

perform fault diagnosis to determine which switches may no longer be used because of the

fault. The scheduler will then be notified of the new state of the breadboard and will perform

contingency scheduling to continue efficient use of the power system. All these actions occur

autonomously.

SSM/PMAD Interface User Manual

1-13

Appendix i

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

There is not much for a user to do during autonomous operations except to observe the

schedule's progress and possibly monitor any interesting switch and sensor data. At any

time the user may choose to go back to manual mode by selecting the manual mode option

in the initialization menu of the SSM/PMAD interface. If the user does go back to manual

mode, the breadboard will remain in the last state it was in in autonomous mode. It is up to

the user to turn off any on switches. The user may then proceed to again enter autonomous

mode after preparing a new schedule on the Symbolics.

3.3.6 Stopping FRAMES

Stopping FRAMES is an important function. In fact, to exit the SSM/PMAD interface

FRAMES must first be stopped.

Stopping FRAMES is performed by selecting the stop FRAMES option in the initializa-

tion menu of the interface. This option causes all the associated FRAMES processes to be

shut down. More importantly, however, is that all the communications that has occurred

between FRAMES, the LLPs, and the Symbotics is logged to archival files. Additionally, all

messages that have been displayed to the status window also get logged to an archival file.

This is important for debugging and development purposes. It enables an accurate record

to be kept of each session of SSM/PMAD breadboard.

3.3.7 Shutting Down the SSM/PMAD Interface

Shutting down the SSM/PMAD interface is also very easy. To shut down the user selects

the exit option located in the menu under the KNOMAD menu item of the SSM/PMAD

interface. This option exits the LISP system causing X windows to also be exited. The user

will find a UNIX prompt on the screen as a result of exiting. At this point the user may

simply logout or do whatever else is desired at a UNIX prompt.

V

SSM/PMAD Interface User Manual

1-14

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

4 The SSM/PMAD Breadboard

This section of the user manual describes the theory of operation of the SSM/PMAD bread-

board. It also discusses in much greater detail the options available to the user using the

SSM/PMAD interface. These include the various utility functions, window operations, and

other functions available to the technical user.

The user is also introduced to the FRAMES knowledge base; the FRAMES domain and

the rule groups making up the soft and hard fault expert systems.

4.1 SSM/PMAD Breadboard Theory of Operation

The SSM/PMAD breadboard consists of the hardware and software for efficiently manag-

ing and operating a space station module like power system. This includes the necessary

scheduling of power, the control of hardware switches, and the overall control of the bread-

board during normal and contingency operations. This section will describe the goal of the

SSM/PMAD breadboard, the functional division of hardware and software throughout the

breadboard, both manual and autonomous system operation and contingency operations.

4.1.1 The SSM/PMAD Goal

To operate spacecraft, power systems must exist to supply the energy needed for the various

components and subsystems to carry out their work. Up to now, these power systems were

either managed by ground personnel performing planning and scheduling for the activities to

be carried out by the spacecraft, or were managed by flight crew personnel carrying out the

same activities on-board the space vehicle. In either case, a priori knowledge of the initial

plan did not guarantee the production of a sound, manageable power usage schedule, and

the efforts of many people were necessary to complete the required iterations to produce a

manageable power usage plan for a given mission profile.

In addition to this, power usage contingencies arise within practically all missions. Plan-

ning under the conditions of a contingency often does not allow for the key personnel or the

time needed to complete the task in a safe manner, regarding the appropriate priorities and

how they may change with respect to time and conditions. It is generally agreed that an

expert who handles the management of a contingency replanning activity does so by knowing

what the important system factors are, and by tracing through those factors until arriving

at a safe and acceptable plan.

The primary goal of the SSM/PMAD is to autonomously provide, manage, and update

as needed an appropriate, autonomously supplied power usage schedule (reflecting the needs

of loads and their respective priorities), whether under nominal conditions or a contingency.

This means that the loads are provided power in the best way that the automation system

can provide. The line of reasoning within each knowledge processing environment of the

SSM/PMAD Interface User Manual

1-15

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

SSM/PMAD instills this goal, and the deterministic processingsupports it. Hence, the
systemhasone direction and one philosophy;to simply implementand support the goal.

4.1.2 Hardware and Software Functional Division

There are a number of functional operations that must be performed to meet the SSM/PMAD

goal. These functional operations include schedule generation and transformation functions

to enable a schedule of activities to be transformed into switch control events for subsequent

execution by the switchgear, limit checking functions to make sure that the switchgear per-

forms within allowed specification, interfaces to specify activities to be scheduled and system

operation (as well as monitoring and manipulation of the power system switchgear), and di-

agnosis functions for detecting, isolating, and recovering from power system faults. These
functions are described here:

MAESTRO The scheduler is responsible for taking a set of activities as input and, using a

model of the power system topology, producing an efficient schedule for the activities

as output.

FELES A schedule translator and associated functions for both interfacing MAESTRO to

the rest of the SSM/PMAD breadboard and defining a list of events for turning on and
off switches of the breadboard,

LPLMS A load priority list generator. Used to define priorities on switches that map

to scheduled events. These priorities are then used by the SSM/PMAD system to

determine what switches can be shut off to enable switches operating activities with

higher priorities to remain on in contingency operations.

FRAMES The set of expert systems and deterministic algorithms for detecting and diag-

nosing hard faults and soft faults during autonomous operation of the breadboard.

System Operation This function is the main controlling function of the SSM/PMAD

breadboard. It manages all the other functions of the breadboard.

SSM/PMAD Interface The interface is used to operate the breadboard in both manual

and autonomous modes. It is used to initialize and stop the breadboard.

Symbolics Interface This interface is used to generate activities to be scheduled for exe-

cution in the SSM/PMAD breadboard as well as actual scheduling of activities.

KNOMAD-SSM/PMAD The supporting software for the FRAMES knowledge base and

advanced AI progra_ing for the SSM/PMAD breadboard.

SSM/PMAD Interface User Manual

1-16

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

Limit Checking Used to determine if the amount of current going though a switch is within

the allowed amount.

Load Shedding This function shuts off switches in the load centers if the amount of current

going through the switch is more than allowed as determined by the limit checking

function. In the PDCU, the illegal use of current is reported to the user and FRAMES

if appropriate.

Schedule Execution The events generated by the schedule must be executed, causing

switches to be turned on and off.

Fault Reporting When a fault occurs in the power system hardware, the fault must be

reported to the user and FRAMES so diagnosis and recovery may occur.

Redundant Switching If a switch gets turned off in a contingency situation and the load

being powered by that switch has been declared to be important and scheduled in a

redundant fashion, then the redundant switch to the load will be turned on to keep

the load powered.

Fault Isolation Fault isolation must be performed by the SSM/PMAD breadboard to de-

termine the cause of a fault when in autonomous operation.

Performance Monitoring The SSM/PMAD breadboard is a power system, and as such,

power is monitored and averaged over time. The performance monitoring function

allows the user to observe how the power is being utilized compared to how it was

scheduled.

The SSM/PMAD breadboard hardware and software is configured as in figure 1. Each

80386 PC functions as one LLP. Each LLP is responsible for controlling either a load center

or a power distribution and control unit. This involves communicating to the SIC and A/D

cards of the hardware for that LLP. Each SIC is then responsible to control a set of generic

cards for operating the RPCs. The LLPs are discussed in detail elsewhere.

Fault isolation is performed by software on both the Solbourne and the LLPs. Fault isola-

tion consists of both deciding which switches need to be manipulated to get more information

about a fault and for actually manipulating those switches and observing the results.

The functional operations are partitioned to hardware elements of the SSM/PMAD

breadboard for control, performance, and logical reasons (see [5]). Those operations that

need to be performed quickly (within seconds) are partitioned to the LLPs. Fault diagnosis

and system control operations are partioned in the next level up and operate in the seconds

to minutes region. Schedule generation and regeneration (in a contingency situation) are

partioned at the highest level of the system and operate in the minutes to tens of minutes re-

gion. Finally, the critical operations of tripping a switch due to low-impedance shorts in the

SSM/PMAD Interface User Manual

1-17

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

Solbourne5/501
SSM/PMADInterface
SystemOperation
FRAMES
KNOMAD-SSM/PMAD
FaultIsolation

[
MAESTRO
FELES

[LPLMS

ISymbolics Interface

Symbolics 3620

Limit Checking "_

Load Shedding
Schedule Execution

Fault Reporting l

Redundant Switching
Fault Isolation
Performance Monitoring

Ethernet

1Rs-423

SWITCHGEAR J
Figure 1: SSM/PMAD Breadboard HW/SW Configuration

power system are carried out in the millisecond region and are performed in the switchgear
itself.

Thus, those operations that are important for sating the system remain, as in a traditional

power system. What has been added are the necessary sensors and power system remote

operations for the capability of installing intelligence to the power system operation and

allowing the user of the system to concentrate on more important tasks such as the carrying

out of experiments.

4.1.3 Manual System Operation

When the system is in manual mode, the elements of the Symbolics and FRAMES diag-

nostic systems are not present. Normal manual operations consists of a single interface,

the SSM/PMAD interface for operating and controlling the power system switchgear. The

transactions that occur between the System Operation function and an LLP are as follows

during initialization:

1. An initialization message is sent to the LLP.

2. The LLP responds with three messages about its configuration.

(a) The switch and sensor configuration of the LLP.

(b) The switch conversion values of the LLP used to convert amperage readings from

the switch to amps. These values may be adjusted for calibration.

SSM/PMAD Interface User Manual

1-18

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

(c) The sensor conversion values of the LLP used to convert sensor readings to the

appropriate units and values. These values may be adjusted for calibration.

3. The Solbourne also sends a time synchronization message to the LLP so that the LLP

may initialize its clock.

4. If the SSM/PMAD breadboard was initialized with any buses then the appropriate

PDCUs will be commanded to turn on their switches.

5. If the above step occurs for an LLP, the LLP commanded will also send a switch

performance message to the Solbourne.

After the LLPs have been initialized, the user may command a switch or request data

from an LLP. If a switch is commanded the following transactions occur:

1. The Solbourne sends a switch control list to the LLP to command the switch.

2. The LLP sends a switch and sensor configuration transaction back to the Solbourne

to reflect the new state of the switches as a result of the command.

3. The LLP also updates its performance data on the switches and sends performance
data to the Solbourne.

If a request for data is initiated the following transactions occur:

1. The Solbourne sends a query for data transaction the the LLP.

2. The LLP responds with a transaction that fulfills the request.

Every five minutes the LLPS update their performance data for switches and sensors.
This information is then sent in two transactions to the Solbourne:

1. The LLP sends a switch performance transaction to the Solbourne.

2. The LLP sends a sensor performance transaction to the Solbourne.

Finally, if a fault occurs in the power system switchgear, the following transactions occur:

1. The LLP detecting the fault sends a fault transaction to the Solbourne.

2. The Solbourne then sends a quiescent transaction to all the LLPs. This transaction is

a request for the LLPs to send a quiescent is true transaction back to the Solbourne

when their data is quiescent.

3. Each LLP sends a quiescent is true transaction to the Solbourne.

SSM/PMAD Interface User Manual

1-19

Appendix I
SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

4. The Solbourne then sends a request for switch status information to each LLP.

5. Each LLP responds with the switch status transaction.

Manual system operation is the default mode of the SSM/PMAD breadboard. It is

used for manually operating the switches and observing the operation of the power system

switchgear, perhaps for the purpose of calibrating the switchgear as well as testing new

components. It can also be used when autonomous operation is more than necessary for the

purpose of operating a device using the power system.

4.1.4 Autonomous System Operation

In autonomous system operation the addition of the FRAMES fault diagnosis software and

the functional elements residing on the Symbolics are added to the manual mode software.

System operation is almost identical except for initialization and contingency operations.

During initialization the following system transactions occur:

1. The Solbourne sends a ready transaction to the Symbolics.

2. The Solbourne sends an initialize transaction to each LLP.

3. The Symbolics responds with a schedule of events and a load priority list.

4. Each LLP responds with a switch and sensor configuration transaction as well as switch
and sensor conversion values.

. If the SSM/PMAD breadboard was initialized with any buses then the Solbourne will

command the PDCUs to turn on their switches if they control the bus specified by the

user.

6. If a PDCU had its switches turned on it will send a switch performance transaction to
the Solbourne.

7. The Solbourne loads and initializes the fault diagnosis expert system software.

8. The Solbourne then prompts the user for a starting time to start the schedule.

9. The start of mission time is then sent to both theSymbolics and the LLPs to initialize

their clocks.

Normal autonomous operations then include the normal periodic switch and sensor per-

formance transactions sent from the LLPs to the Solbourne. However, in addition to these

normal transactions the following additional transactions may occur:

%.J

SSM/PMAD Interface User Manual

1-20

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

.

,

.

Every five minutes the Solbourne will compute the utilization of power of the bread-

board for each switch and for the overall power usage. This utilization data will then

be sent to the Symbolics for reference purposes.

Periodically, FELES and LPLMS will send updated versions of the schedule and load

priority list to the Solbourne.

The Solbourne will then distribute the various parts of these lists to the respective
LLPs.

As in manual operations, the user may query the LLPs for data at any time.

When a fault occurs in the power system switchgear the sequence of transactions and

operations is much more involved:

1. When an LLP first detects a fault in the switchgear it sends a fault transaction to the
Solbourne.

2. The Solbourne then sends a quiescent transaction to each LLP.

3. Each LLP responds with a quiescent is true transaction when their data is in a stable

state.

o

5.

6.

.

8.

°

The Solbourne then sends a query for switch status information to each LLP.

Each LLP then sends the switch status transaction as requested.

The Solbourne then checks to see if the snapshot of the power system it has just

collected is stable. If an LLP has had new fault data during the data collection stage

it will set a non-quiescent bit in the switch status transaction. If the snapshot is not

stable the Solbourne will repeat steps 2-5 until a quiescent snapshot is achieved.

At this time the Solbourne sends a contingency start transaction to the Symbolics.

The Solbourne also collects the symptoms from the snapshot and initiates the fault

diagnosis expert system to perform the fault diagnosis.

The fault diagnosis expert system may need to manipulate the switches to gain more

information about the fault (to isolate it). This process involves sending a switch
control transaction to each of the LLPs with switches that need to be turned on or off.

10. The commanded LLPs will respond with switch and sensor configuration transactions

to keep the Solbourne updated as to the state of the power system.

11. The Solbourne will then repeat steps 2-6 each time a fault isolation step occurs.

SSM/PMAD Interface User Manual

1-21

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

12. When the fault diagnosisexpert systemconcludesa diagnosis,any switchesdetermined
to be unusableare takenout of service.Any out of serviceswitches,load sheds,and
switchesswitchedto redundant arecommunicatedto the Symbolics.

13. Steps8-12 are then repeatedif thereare further faults (representedby symptomsnot
accountedfor by the diagnosesso far). When all the current faults are isolated the
Solbournesendsa contingencyend transaction to the Symbolics.

14. MAESTRO then performscontingencyscheduling,taking activities affectedby out of
serviceswitchesoff the scheduleand possiblyadding other activities to the schedule.

15. The new contingencyscheduleand new load priority list are sent to the Solbourne.

16. The Solbournedistributes the scheduleand load priority list to the LLPs.

Autonomous system operation is much more complex due to the necessityof finding
out what fault really occurredin the powersystemswitchgearand the needto update the
existingschedulesothat anefficientuseof the powersystemmaybemadewith the remaining
switches.See[4] for a surveyof the fault diagnosisproblemand [2] for the solution to this
problemfor the SSM/PMAD breadboard.

In terms of actual LLP and switchgearoperations,autonomousmode operations look
almost identical to manual mode operations. All that is really done is to add a lot of
reasoningmechanismsto the upper layersof the SSM/PMAD breadboardin order to more
intelligently maintain control of the powersystemwithout requiring user intervention.

4.2 The FRAMES Knowledge Base

This part of the FRAMES tutorial describes the expert systems part of the SSM/PMAD

breadboard that make up the fault diagnosis aspect of the system.

The FRAMES knowledge base is a very complex part of the SSM/PMAD breadboard.

It logically consists of a domain file that defines all the data that the expert systems use to

reason about the power system switchgear. It consists of domain functions used by the expert

systems to compute algorithmic functions. It also consists of the main knowledge base and

the various rule groups of the expert systems. These are presented in their entirety in the

SSM/PMAD Technical Reference. The section of the document will discuss the FRAMES

architecture and multiple faults to give a better idea of how the expert system is put together.

4.2.1 The FRAMES Architecture

The FRAMES system is partitioned into three major divisions based upon the response

time needed at the different partitions. The three partitions are the distributed lower level

SSM/PMAD Interface User Manual

1-22

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

processorsfor controlling the hardware,the fault isolationand diagnosisexpert systems,and
the schedulingsystem.

The switchhardwareis controlledby the lower levelprocesseswhich resideon PC clones.
The algorithmic processesat this level control the operation of turning switcheson and off
aswell asmonitoring power levelsand performing limit checking.The lower level processes
detect fault conditions which includea switchphysically tripping off due to an overcurrent
or under voltage situation in the hardware. Thesefault symptoms are communicated to

the fault isolation and diagnosis expert systems. Additionally, scheduled operations may no

longer be performed on the tripped switches.

The response time of the lower level processors is necessarily fast. Typically, limit check-

ing operations to shut a load off if it is using to much power, for example, are done within a

one second period. The speed of the lower level processes also has implications on later fault

isolation. It is quite possible that if an I2t short is occurring in the hardware at a level of

approximately 120% of the switch's rating, that it could take the switch up to five seconds

to trip. The lower level processor will shut the switch off much sooner.

The third partition, the scheduling system, is not required to be nearly as responsive.

Its role is to create a schedule for operating the switches in advance and to maintain that

schedule during contingencies in the power system. In the present system, schedules are

shipped to the lower level processors in thirty minute blocks. This allows for a semi-graceful

degradation of the overall system performance if the scheduler becomes inoperable for some

reason. When a fault has been diagnosed in the power system and a set of switches has been

determined unusable, the scheduler is expected to reschedule its activities in a reasonable

amount of time. The scheduler has been partitioned at the highest level and is expected to

perform in a period of minutes.

The second partition is the fault isolation and diagnosis part of FRAMES. This part

consists of a number of traditional expert systems for diagnosing different types of problems

in the power hardware as well as maintaining other knowledge intensive states such as the

load priority list. Currently three expert systems are defined to exist at this level: the Load

Priority List Management System (LPLMS), the fault diagnosis expert system, and the soft

fault expert system. However, not to confuse the issue, the LPLMS does exist at this middle

layer and is currently implemented on the Symbolics.

The fault isolation and diagnosis expert system requires many supporting functions in

addition to the rules that make it up. Embedding knowledge intensive applications into real

world complex systems require many parts for a successful system (see [3] for one way to

deal with this). In the FRAMES system these additional functions include detecting and

monitoring the hardware (done by the lower level processors); communication algorithms

for communicating with the distributed processors; algorithmic processes for logging data,

updating database values, and the like; and user interface functions to make the system
useful.

A result of this modular organization of functions in both inter and intraprocessors is

SSM/PMAD Interface User Manual

1-23

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

that the expert systemsfor fault isolation and diagnosisdo not needto be executing for
a personto use the system. Another way to look at it is that operating the system in an
autonomousfashion requires the reasoningprocessesas embeddedin the expert systems,
while operating it manually doesnot.

Seethe paper by Riedesel,et. al., for a detailed descriptionof the SSM/PMAD project
[5].

4.2.2 The FRAMES Expert Systems

The expert systems that reside in the middle partition were mentioned above: LPLMS,

fault diagnosis expert system, and soft fault expert system. These expert systems make up

the FRAMES knowledge agent. To make FRAMES smarter, another expert system may be

added to perform some useful function. These expert systems all perform in parallel with one

another as if there were three people in the same room, each looking at one of the reasoning

problems (LPLMS, fault diagnosis, and soft faults).

4.2.3 Multiple Faults in SSM/PMAD

The problem of multiple faults in SSM/PMAD can be divided into two cases:

Case 1 Faults that occur within A time of one another.

Case 2 Faults that occur at least A time from one another.

Where A is defined as: The amount of time it takes for a fault to be initially detected and

subsequently diagnosed. Faults that occur at least A time from one another were already

handled in the first generation of FRAMES. Faults that occur within A time of one another
are the focus of this section.

Suppose first that multiple faults have occurred in the power system during the detection

of the faults. By the time the power system has reached a quiescent state, the lower level

processors will report a set of symptoms indicative of more than one fault. The fault isola-

tion software is then tasked with determining how these collected symptoms might indicate

multiple faults.

There are three cases that may be identified. The multiple faults may occur on the same

bus, they may occur in the same hierarchy, and they may occur on completely independent

buses. For multiple faults that occur in the same hierarchy it is possible that one of the

faults could be masked (by a bad current sensor, for example) and appear to be multiple
faults on the same bus.

To adequately deal with multiple faults the set of symptoms that the LLPs report are

first analyzed and organized into clusters. A cluster of symptoms is a set such that each

symptom in the set either occurred on the same bus or occurred below another symptom.

SSM/PMAD Interface User Manual

1-24

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

This leavestwo cases of multiple faults for the expert system to deal with. Each cluster may

be dealt with independently.

Given a cluster of symptoms, the first thing that is checked is if all the top symptoms

(those symptoms of the set that are all at the highest level - all on the same bus therefore)

are under voltage. If this is the case it is possible that there may be no power to the bus.

To check this, the top sensor of the bus as well as various sensors above the tripped switches

are looked at to see if they have nominal voltage or less than nominal voltage.

If all the top symptoms are either fast trip or over current and they all have loads hooked

up that are related to the same activity, it is possible that the particular activity may be

involved in the trips, if aii the top symptom are fasttrip, not related by an activity and do

not have any switches below them, then it is possible that one of the switches had a short

below it and the other switches may have fast tripped due to energy storage (but unlikely).

Finally, if none of the above cases apply, each of the top symptoms is diagnosed as an

independent fault indication. Each top symptom will be either fast trip or over current (the

under voltages were diagnosed earlier). The particular top switch and the switches below

it may then be tested and diagnosed as an independent fault. Now, if the fault is found

somewhere below the top switch (due to a masked fault), there may have been other faults

in that hierarchy. If there were, the highest (in the topology of switches) of these other

faults, below the top symptom yet across from the switch finally diagnosed as the position

of the fault, may also be diagnosed as independent faults.

An added complication is that the isolation and diagnosis phase is part of the A time.

This includes commanding switches on and off in an effort to repeat the symptoms. If

another fault occurs during this testing, the data collection algorithms must be smart enough

to incorporate any new symptoms correctly into the existing symptoms.

4.3 The SSM/PMAD Interface, in Detail

This section of the FRAMES tutorial discusses the SSM/PMAD interface. There are three

different types of mechanisms provided on the SSM/PMAD interface that may manipulate

the SSM/PMAD breadboard. These are the menu functions, the options available by pressing

a mouse button while it is positioned over the various components of the representation of

the power system on the SSM/PMAD interface, and the pop-up display windows used for

displaying SSM/PMAD breadboard information.

The SSM/PMAD interface screen will be described first. The menu functions available

to the user will be described as will the options available by pressing a mouse button on a

power system component. The pop-up display windows will be described in the context of

their activation by the other functions available on the interface.

4.3.1 The Screen

"-...__j
SSM/PMAD Interface User Manual

1-25

Interim
Appendix I Final Report MCR-89-516
SSM/PMAD Interface User Manual Volume II July 1990

V

Figure 2: The SSM/PMAD Interface

SSM/PMAD Interface User Manual

1-26

ORIGINAL PAGE IS
OF POOR QUALITY

Appendix I -,

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 3: The SSM/PMAD Interface with LLPs

- =, w. ,_j

SSM/PMAD Interface User Manual

1-27
OR!GF-.L_ _

qua .

Interim

Appendix I Final Report

$SM/PMAD Interface User Manual Volume II

MCR-89-516

July 1990

Figure 4: The Initial SSM/PMAD Interface

SSM/PMAD Interface User Manual

1-28 O_,_-_.',P.L PAGE YS
OF pOOR QUAL.ITV'

Appendix I .,.,:,::.

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

"_..J

The main screen of the SSM/PMAD interface is shown in figure 2 3. There are four functional

areas to the interface. The top of the screen contains the title: SSM/PMAD Interface. The

second portion of the screen contains the menu bar. This portion allows the user to access

various functions of the interface such as utility functions, summary functions, initialization,

and exiting. The third portion of the screen is the main window for viewing a representation

of the power system breadboard. Figure 2 shows this area is blank. When LLPs are present

in the system they appear in this portion of the screen. Figure 3 shows the interface with

two LLPs present (PDCU A and Load Center 2). The user may access and manipulate the

power system through its representation on the interface. The fourth and final portion of

the screen is the status bar at the bottom. This bar indicates to the user information about

the state of the SSM/PMAD breadboard.

The status bar represents four informational aspects of the system to the user. The

current time and date is displayed first. The mission time is displayed after that. The mission

time is an indication of how many minutes the scheduIe is into its operation. AII schedules

start at time zero. The mission time is only relevant when the SSM/PMAD breadboard is

operated in autonomous mode. The next item is whether or not the SSM/PMAD breadboard

has been initialized. The last item is the mode of operation. The breadboard always starts
in manual mode.

Figure 4 shows the SSM/PMAD interface as it is first brought up. The only difference

is the FRAMES status messages window in the middle of the screen. The FRAMES status

messages window is used by the SSM/PMAD interface to let the user know about important

activities happening in the SSM/PMAD breadboard. When the user first brings up the

system the user is notified that the system has completed its initializations and is ready for

general system initialization.

The FRAMES status messages window is a general purpose pop-up display window.

Other pop-up display windows include the help windows of the interface. There are also

more specialized pop-up display windows that are used for displaying component data; these

more specialized windows do not have the capability of scrolling while the general ones do.

The easiest way to find out if a window is scrollable is to move the mouse cursor slowly past

the left side of the window. If the window is scrollable a scroll bar for the window should

appear. The FRAMES status messages window is scrollable (as are the help windows).

All pop-up display windows have special mouse activated functions attached to them. If

the mouse is positioned in the title bar of a display window, the user may choose one of three

actions depending upon which mouse button is clicked. The left mouse button is defined

to bring the window to the top of the screen (if it is partially exposed) and to update the

contents of the window if appropriate. The middle mouse button is defined to let the user

aWe realize that these screen images are not entirely readable. The problem is inherent in reducing an 8
hit deep color image to a single bit for a black and white picture. We will do our best to make sure that each
item on the screen images is explained so that the context of the screen description should provide enough
information to parse the especially difficult to see screendumps.

SSM/PMAD Interface User Manual

1-29

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

movethe window. To moveit, the userwould hold down the middle button and drag the
window to the desiredlocation. The right mousebutton is definedto hide the window from
view.

4.3.2 The Menu Functions

The main user interface to the SSM/PMAD breadboard is through the functions available

on the representation of the power system. However, there are a number of important

functions the user has access to via the menu bar of the SSM/PMAD interface. These include

various utility functions, data summarization options, initialization and exiting functions,

and various help displays. Each of the menus and their options will be discussed below.

Every menu the user accesses on the SSM/PMAD interface has a help option as one of

the menu alternatives. This help option will always display a context sensitive help to the

user. Additionally, if the user holds the mouse over one of the menu options, a one-line

message will be displayed in the small messages window of the interface. This can be seen

in figure 5.

The KNOMAD Menu The KNOMAD menu is shown in figure 6. It has two options

available to the user. The user may either exit the KNOMAD system or get help about the

menu.

Exiting KNOMAD means that the user wishes to exit the LISP session and get back to

a UNIX prompt. The exit option is only available while the SSM/PMAD breadboard is not

initialized. If the breadboard is initialized the user will not be allowed to complete the exit

option.

The KNOMAD help option displays a window shown in figure 7 that the user can read

to get information about the KNOMAD menu.

All help windows are scrollable pop-up display windows. The functions available to the

user on a scrollable pop-up display window were discussed above. These include scrolling

the window, bringing the window to the top of the screen (if it is partially exposed) and

hiding the window.

The Utilities Menu The utilities menu is shown in figure 8. The user may access three

functions from this menu including a help option. The utilities help menu is shown in

figure 10.

A screendump may be taken of the SSM/PMAD interface at any time by selecting the

screenduml_ option. This option will cause a compressed screendump file to be written to

the user's /knomad-archive directory. This screendump will have a file name that starts

with Screen-, followed by the date and time of the dump followed by the .Z suffix. The

screendump option dumps the entire screen to this file.

SSM/PMAD Interface User Manual

1-30

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

v

Figure 5: Example One-line Information Message

"..._j
SSM/PMAD Interface User Manual

1-31
OR|GfNAL Pt_GE IS

OF POOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 6: The KNOMAD Menu

Figure 7: The KNOMAD Help Window

SSM/PMAD Interface User Manual

1-32 OfilGi__AL. P;_GE iS

OF POOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

T

Figure 8: The Utilities Menu

Figure 9: The Communications Menu

SSM/PMAD Interface User Manual

Interim
Appendix I Final Report
SSM/PMAD InterfaceUserManual VolumeII

MCR-89-516
July 1990

Figure 10: The Utilities Help Window

Figure 11: The CommunicationsHelp Window

SSM/PMAD InterfaceUserManual

1-34 ORIGINAL PAGE IS

OF POOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report : MCR-89-516

Volume I1 July 1990

A window dump may also be selected by the user. The window dump option allows

the user to write only an image of a selected window to a file. As mentioned earlier, the

SSM/PMAD interface is divided into four parts. Each of these parts is a separate window

and may be individually dumped. Any other windows may also be dumped including the

FRAMES status messages window, any pop-up display windows, etc. To perform a window

dump the user selects the window dump option. When the system is ready for the dump

(a couple seconds later) the mouse cursor will change to a cross-hair. At that time the user

should position the cursor over the window to be dumped and click any mouse button once.

The system will then beep once to indicate the start of the dump and beep twice to indicate

that the image has been captured from the screen and is being processed to a file.

A window dump is also saved in the user's /knomad-archive directory with a file name

of the form Window- followed by the date and time of the dump and a .Z as the suffix.

Window dumps are also compressed.

Both window dumps and screen dumps are saved in a compressed format. If a screen

dump was not compressed each one would be one megabyte. Window dumps can quickly

grow large as well. The compressed format allows many window and screen dumps to be

performed without having major disk space problems 4.

The other function available to the user is a pull-right option that allows access to various

communications functions of the SSM/PMAD breadboard. These options are described in

the next paragraph.

The Communications Pullright Menu The communications options menu is seen

in figure 9. It is accessed by holding any mouse button down over the utilities option in

the menu bar to bring up the utilities menu. The user then positions the mouse over the

communications option and pulls the mouse to the right until the communications options

sub-menu appears, all the while holding the mouse button down.

The communications menu allows the user to monitor both the transmitter and the

receiver. It also allows the user to access the communications status of FRAMES with the

rest of the system. Finally there is a help option, shown in figure 11.

Selecting one of the communications options--the transmitter, receiver, or status--will

bring up the corresponding window on the interface. These are shown in figure 12. These

windows are a specialized version of pop-up display windows. The user may update their

contents, move them and hide them as with ordinary pop-up display windows. However,

these windows also have additional options.

The transmitter and receiver windows allow the user to examine any of the transmitted

messages between FRAMES and the rest of the SSM/PMAD breadboard. This is not at all

restrictive since the SSM/PMAD interface is the central part of the breadboard. The user

may examine an entry by clicking any mouse button while it is positioned over the examine

4It is assumed in this manual that the user has some knowledge of both compressed files and raster files.

w_%..._._J/

SSM/PMAD Interface User Manual

1-35

Interim

Appendix I Final Report MCR-89-516

SSM/PMAD Interface User Manual Volume II July 1990

V

Figure 12: The Communications Windows

%M
SSM/PMAD Interface User Manual

1-36

t'_._. IS

OF pOOR QUALITY

Appendix I _,.

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 13: A Prompt Window for Displaying a Transaction

Figure 14: A FRAMES Transaction

SSM/PMAD Interface User Manual

quA

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

V

Figure 15: Closing a Communications Connection

SSM/PMAD Interface User Manual

1-38

OF POOR QUAUT_"

L

Appendix I , :_

SSM/PMAD Interface User Manual

Interim

Final Report _ MCR-89-516
Volume II July 1990

entry option on the window. This will bring up a window as shown in figure 13. The user

then types the number of the transaction to be displayed while the mouse is positioned over

that window. When the user types a return to input the number the transaction will be

displayed in a pop-up display window. An example is shown in figure 14.

The user may monitor and manipulate communications connections between FRAMES

and the rest of the breadboard. If the user holds down any mouse button over either the

open or close option of the communications status window a pop-up menu will be displayed

for the user to select which other computer the user wants to open or close a connection

with. An example is shown in figure 15. From the figure it is easy to see that the user may

close a connection to any of the other computers. However, when opening a connection the

user will only be able to open a connection to the Symbolics computer. This is because the

LLPs are responsible for opening and maintaining their own connections.

Space F h ht Center
PMAD Interface

S Ut,-tMARY INIT1AUZE

Figure 16: The Summary Menu

The Summary Menu The summary menu options are shown in figure 16. The user has

access to three sub-menus through the summary menu. These are a switchgear summary

menu, a power utilization menu, and a schedule menu and are discussed in the following

paragraphs. The summary help window is shown in figure 20.

The Switchgear Summary Pullright Menu The FRAMES summary sub-menu is

shown in figure 17. This menu should really be called the switchgear summary menu. It

allows the user to get a summary of switchgear components, RPCs and sensors, in a number

of ways. The user can get a full summary of the system, a summary by LLP, or a summary

by selected components. These options will bring up display windows that display the data

on switches and sensors in an easy to read format. However, these functions are not currently

SSM/PMAD Interface User Manual

1-39 OaI,J,_._._C_ r.,_-_.

OF POOR QU._LW_(

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 17: The Switchgear Summary Menu

Figure 18: The Power Utilization Options Menu

SSM/PMAD Interface User Manual

1-40

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

Volume II

MCR-89-516

July 1990

v

Figure 19: The Schedule Options Menu

Figure 20: The Summary Help Window

\

SSM/PMAD Interface User Manual

1-41

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

Volume II

MCR-89-516

July 1990

V

Figure 21: The Switchgear Summary Help Window

Figure 22: The Power Utilization Help Window

SSM/PMAD Interface User Manual

1-42
OF POOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

Figure 23: The Schedule Help Window

implemented. Currently, the user will need to get data on a switch or a sensor by accessing

the component directly.

The switchgear summary help menu is shown in figure 21.

The Power Utilization Pullright Menu The power utilization sub-menu is shown

in figure 18. The user has access to graphs that display power usage data, both scheduled

and actual, by selecting these options. The user may choose to see the utilization of the

entire breadboard, or just an LLP, or of selected components. However, these functions are

currently not implemented.

The power utilization help display window is shown in figure 22.

The Schedule Pullright Menu The schedule sub-menu is shown in figure 19. The

user may access the schedule for the entire breadboard, for an LLP, or for selected RPCs.

The schedule will be displayed that shows the user when the various RPCs will be turned on

and off as well as other information related to the scheduled events. However, these functions

are not currently implemented.

The schedule help display window is shown in figure 23.

The Initialize Menu The first initialization menu the user will see is shown ,in figure 24.

When the SSM/PMAD breadboard is not initialized the user will use this menu to initialize

it. It has two options, the initialize FRAMES option which is a pull-right to a sub-menu of

initialization options, and a help option. The help display window is shown in figure 26.

OF POOR QUaLiTY

SSM/PMAD Interface User Manual

1-43

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990
h

Figure 24: The Initialize Menu

Initialize BOTHBuses

Initialize Bus A

Initialize Bus B

Initialize No Buses

Help

Figure 25: The Initialization Options Menu

SSM/PMAD Interface User Manual

1-44

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report

VolumeII
MCR-89-516

July 1990

Figure 26: The Initialize Help Window

Figure 27: The FRAMES Initialization Help Window

SSM/PMAD InterfaceUserManual

1-45
OF pOOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

...........................
V

Figure 28: The Other Initialize Menu

To initialize the breadboard the user will use the initialize FRAMES option and access

the pull-right sub-menu for a particular initialization choice. This is discussed in the next

paragraph.

The Initialize FRAMES Pullright Menu The initialize FRAMES sub-menu is

shown in figure 25. This menu allows the user to initialize FRAMES in four different config-

urations depending upon how power is set on the two buses to the power system. The help

display window is shown in figure 27.

If power is only available on bus A, then the initialize bus A option should be chosen.

The other options are chosen similarly. These options will result in the switches for the

PDCU of that bus to be turned on allowing power to the LCs. There is a limitation in this

version of the SSM/PMAD breadboard that requires the breadboard to be operated in this

fashion (see the redundancy bug in the known bugs appendix of this use manual).

The Initialize Menu 2 When the SSM/PMAD breadboard has been initialized, the

initialize menu option changes to display the menu shown in figure 28. This menu allows

the user to stop FRAMES and toggle between autonomous and manual modes. Initially the

user is started in manual mode and the option to go to autonomous mode is enabled. When

the user is in autonomous mode the option changes to go to manual mode.

The stop FRAMES option is used to shut down the SSM/PMAD breadboard. This

function archives data for debugging purposes. It also allows the user to exit the SSM/PMAD
interface.

V

SSM/PMAD Interface User Manual

1-46

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

Figure 29: The Help Menu

The Help Menu The help menu is shown in figure 29. It allows the user to display help

about various parts of the SSM/PMAD interface.

The about LLPs option allows the user to access information that describes the LLPs

and options available to the user from the LLPs. This display window is shown in figure 30.
These functions are discussed in section 4.3.3.

The about RPCs option allows the user to access information that describes the RPCs

and options available to the user from them. This display window is shown in figure 31. The

functions associated with the RPCs are discussed in section 4.3.3.

The about loads option allows the user to access information that describes the loads

and options available to the user from them. This display window is shown in figure 32. The

functions available from the loads are discussed in section 4.3.3.

The about sensors option allows the user to access information that describes the sensors

and options available to the user from them. This display window is shown in figure 33. The

functions accessible from the sensors are discussed in section 4.3.3.

The about cables option allows the user to access information that describes the cables

and options available to the user from them. This display window is shown in figure 34. The

functions accessible from the cables are discussed in section 4.3.3.

The about mouse cursor help option brings up a display window describing the meanings

of the various mouse cursors used on the SSM/PMAD interface.

SSM/PMAD Interface User Manual

1-47

Appendix I
SSM/PMAD Interface UserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

Figure 30: The LLPs Help Window

%J

Figure 31: The RPCs Help Window

SSM/PMAD Interface User Manual

.--.

1-48 ORl_a;d.A,. PIG_ SS

OF POOR QUALITY

Interim

Appendix I :_ Final Report

SSM/PMAD Interface User Manual Volume II

MCR-89-516

July 1990

_j

Figure 32: The Loads Help Window

Figure 33: The Sensors Help Window

. ;:_ :Q_" _C-K)R QUALITy

SSM/PMAD Interface User Manual

1-49

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 34: The Cables Help Window

Figure 35: The Mouse Cursor Help Window

SSM/PMAD Interface User Manual

1-50
ORI_iNA_ P_,G._ _3

OF POOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-5I 6

Volume II July 1990

Figure 36: The Main Menu Help Window

The arrow mouse cursor is used to signify a normal mouse with no special semantics
attached to it. The X and dot mouse cursors are both used to indicate that there is a user

interface menu option available. While the mouse is an X or a dot, the user may hold down

any mouse button and a menu will appear that is context sensitive to the item the mouse is

positioned over. The target cursor is used when the mouse is positioned in the title bar of

a pop-up display window. Each mouse button has a different semantics when pressed while

in the title bar. The left button is used to bring a partially exposed window to the top as

well as update any data in it, the middle button is used to move the window and the right

button is used to hide the window.

The about main menu option brings up a display window describing the main menu bar

of the interface. These functions are the subject of this entire section of the document.

The about display windows option brings up a pop-up display window that describes

the actions a user has available on pop-up display windows. The attributes of a pop-up

display window have been described earlier and throughout this document where it has been
relevant.

4.3.3 The Power System Components' Functions

The various components of the power system representation on the SSM/PMAD interface

that many be manipulate are the LLPs, RPCs, sensors, cables, and loads. An example screen

with these items on it is shown back in figure 3. Each of these items may be moused by

the user to bring up a menu of options the user has on the component clicked on and are

SSM/PMAD Interface User Manual

1-51 ORIGINAL PAGE IS
OF POOR QUALIFY

Interim

Appendix I Final Report

SSM/PMAD Interface User Manual Volume II

MCR-89-516

July 1990
.... TTT,II I

Figure 37: The Display Windows Help Window

discussed in the following paragraphs.

The LLPs- Tl_e LLPs on t]_e int-erface represent the LLPsof tiae s-sM/_M_,D]_readboard.

When the mouse is positioned over an LLP the mouse cursor changes to a dot. This indicates

that if any mouse button is pressed down, a menu of options will pop-up for the user to select

about an LLP. This menu is shown in fig 38.

The user may examine the schedule, the power utilization, or a summary of the LLP by

selecting one of the options. These functions are the same functions as those available in

the summary menu. However, these are not implemented in version 1.0 of the SSM/PMAD
interface.

The RPCs When the mouse cursor is positioned over an RPC the mouse cursor changes

to an X cursor. If the user holds down any mouse button while positioned over an RPC a

menu of RPC options will be displayed. This is shown in figure 39.

The user may select to get normal or detailed data from an RPC as well as continuous

(normal) data from it. Each of these functions will bring up a pop-up display window with

the selected RPC as the title. This is a special version of a pop-up display window and is not

scrotlable. The usual title bar functions are available: left-click to get new/updated data,

middle-press to move the window, and right-click to close the window.

A normal switch data window will display information about how much current is being

used by the switch, the switch's state, if it is powered or not, how it has been tripped (if

it has been tripped), and if the switch is available. Continuous switch data uses exactly

SSM/PMAD Interface User Manual

1-52 oRIGINAL PAGE IS
OF pOOR QUALITY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report

Volume II

MCR-89-516

July 1990

Figure 38: An LLP Menu

Figure 39: An RPC Menu

ORIGINAL PAGE IS
OF POOR QUALITY

SSM/PMAD Interface User Manual

1-53

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

the same window with the same data but is updated continuously with data that the LLP

gathers from the RPC every time through its loop. Detailed switch data provides advanced

information about the switch from the LLP. Figure 43 shows an example of normal switch

data.

In addition to these functions the user may also command a switch on or off if the user is

in manual mode. These options do not appear if the user is in autonomous mode. If the user

selects one of these options, the corresponding command is sent to the LLP and the interface

is updated appropriately. An interesting feature of the command options is that the user

does not need to manually turn on each switch in the power path to enable a lower switch

to be turned on. For example, suppose no power is on anywhere in the breadboard. The

user then wishes to command on switch c05. The user may directly access the command on

function of RPC (305 and command it on. The function will then realize that neither A01

or A03 are on and turn them on first to enable switch C05. This type of interaction with

the breadboard will also occur when a switch is commanded off. Any lower switches will be

turned off first.

Figure 40: A Sensor Menu

The Sensors When the mouse cursor is positioned over a sensor the mouse cursor changes

to an X cursor. If the user holds down any mouse button while positioned over a sensor a

menu of sensor options will be displayed. This is shown in figure 40.

The user may choose to access sensor data about the sensor as the only option available

in version 1.0 of the SSM/PMAD Interface. This option, like the switch data option of

RPCs, will pop-up a specialized pop-up display window to display current, voltage, power

and temperature of the sensor. An example is shown in figure 44.

SSM/PMAD Interface User Manual

1-54 "-

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 41: A Cable Menu

The Cables When the mouse cursor is positioned over a sensor the mouse cursor changes

to an X cursor. If the user holds down any mouse button while positioned over a sensor a

menu of sensor options will be displayed.

When the user chooses to get information about a cable the system automatically in-

directs that action to a sensor button action. The reasoning is that a cable, by definition,

cannot be accessed and cannot provide information about itself. The sensor, however, is

used to provide this information. Therefore, when the user clicks on a cable, the closest

sensor above the section of the cable where the user clicked is used instead. An example of

this is shown in figure 41.

Figure 42: A Load Menu

The Loads When the mouse cursor is positioned over a load the mouse cursor changes to

an X cursor. If the user holds down any mouse button while positioned over a load a menu

-..__.#
SSM/PMAD Interface User Manual

ORIGINAL PAGE !$ 1-55

OF POOR QUALr'rY

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report
Volume II

MCR-89-516

July 1990

Figure 43: Switch Data

Figure 44: Sensor Data

LOAD-C05

Figure 45: Load Data

SSM/PMAD Interface User Manual

1-56 = =

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

of sensor options will be displayed. This is shown in figure 42.

The options available to the user for a load are only to get data about the load. In version

1.0 of the SSM/PMAD Interface, no knowledge of the loads is maintained. Therefore, only

data indicating whether a load is powered or not is given (shown in figure 45). This also

explains why, although only those switches that are available in the power system switchgear,

all the loads are always displayed. No knowledge of whether there are even any loads in

existence is even known, therefore, all the loads are simply displayed whenever an LLP is

displayed.

\ f

SSM/PMAD Interface User Manual

1-57

Appendix I

SSM/PMAD Interface User Manual

Interim

Final Report MCR-89-516

Volume II July 1990

A Known Bugs

This section provides a brief description of important problems with the SSM/PMAD bread-

board that are known at this printing.

. Scrolling problems. The display windows scroll fairly well but occasionally exhibit

anomalous behavior. The scrolling for the FRAMES receiver and transmitter logs

barely works. The transactions logs will not print some lines where they should be.

When there are more entries than fit in the window, the numbering is off by one. If

an entry is labeled 52, the number is really 53 if it is to be examined.

2. Examining a transaction entry has an interesting bug. When the user types in a

number, it is echoed twice. Just ignore the extra echo.

, The SSM/PMAD breadboard does not handle redundant switching completely. In

version 1.0 the scheduler will shut off a switch that has been switched to redundant

when contingency scheduling has occurred.

The redundancy problem has generated a number of problems in the SSM/PMAD

breadboard. The most apparent is that operation of the breadboard involves initially

turning on all the PDCU switches so that if a load needs to switch to its redundant

supply, there will be available power. This needs to be thought about in some detail

in the next few months. A proper partitioning of MAESTRO, FELES, and LPLMS is

one of the implications of the handling of redundancy appropriately.

Some initial discussions suggest that MAESTRO doesn't need to do much more than

it currently does (except to actually keep a load on that has switched to redundant --

is this an FELES problem?), that perhaps FELES should know how the power system

needs to have its switches turned on according to the schedule, and finally that LPLMS

should manage the whole issue of priorities so that if a load does need to switch to

redundant, the proper loads, from a global point of view, will be shed.

V

References

[1] W. Miller, E. Jones, B. Ashworth, J. Riedesel, C. Myers, K. Freeman, D. Steele, R.

Palmer, R. Walsh, J. Gohring, D. Pottruff, J. Tietz, and D. Britt. Space Station Automa-

tion of Common Module Power Management and Distribution. Technical Report Con-

tractor Report 4260, NASA, November 1989.

[2] Joel D. Riedesel. Diagnosing multiple faults in ssm/pmad. In Proceedings of the 25th

Intersociety Energy Conversion Engineering Conference, 1990.

SSM/PMAD Interface User Manual

1-58

Appendix I
SSM/PMAD InterfaceUserManual

Interim
Final Report MCR-89-516

VolumeII July 1990

[3] Joel D. Riedesel. Knowledge Management: An Abstraction of Knowledge Base and

Database Management Systems. Technical Report Contractor Report 4273, NASA, Jan-

uary 1990.

[4] Joel D. Riedesel. A survey of fault diagnosis technology. In Proceedings of the 24th

Intersociety Energy Conversion Engineering Conference, 1989.

[5] Joel D. Riedesel, Chris Myers, and Barry Ashworth. Intelligent space power automation.

In Proceedings of the Fourth IEEE International Symposium on Intelligent Control, 1989.

SSM/PMAD Interface User Manual

1-59

AppendixII
SSM/PMADLLP Reference

Interim

FinalReport
VolumeII

MCR-89-516

July 1990

Contents

1.0 LLP Reference Overview

2.0 LLP Software

2.1 Switching Operations

2.2 Schedule Execution

2.3 Load Shedding

2.4 Fault Reporting

2.5 Fault Isolation

2.6 Redundant Switching

2.7 Performance Monitoring

2.8 Limit Checking

2.9 Configuration Determination

2.10 Multiline Interrupt Driver

2.11 CMC Ethernet Driver

3.0 LLP Hardware

3.1 LLP Computing Hardware Overview

3.1.1 LLP Motherboard Configuration

3.1.2 RS-422 Card Configuration

3.1.3 Ethemet Adapter Configuration

3.2 Switchgear Overview

3.2.1 Switchgear Interface Controller

3.2.2 Generic Controller

3.2.3 Switches

3.2.4 Sensors

4.0 Future LLP Concerns

4.1 Feasible LLP Solutions

2

3

3

3

4

4

4

5

5

5

6

6

6

8

8

8

9

9

11

11

II

12

12

13

13

SSM/PMAD LLP Reference
II-1

Interim

AppendixII FinalReport MCR-89-516
SSM/PMAD LLP Reference Volume II July 1990

1.0 LLP Reference Overview

This LLP Reference contains three sections with information on both the LLP

software and the LLP hardware. The LLP software functionality and configuration is

discussed ftrst. This is followed by an overview of the LLP hardware configuration. The

last section of this reference examines possible future directions for the LLP hardware and

software development.

v

SSM/PMAD LLP Reference
II-2

AppendixII
SSM/PMADLLP Reference

Interim

Final Report MCR-89-516

VolumeII July 1990

2.0 LLP Software
The LLP software maintains and controls low level operations through a large

number of LLFs. These software functions control switching operations, schedule

execution, load shedding, fault reporting, fault isolation, and redundant switching. In

addition, these functions also monitor performance, maintain load limits through limit

checking, and upon power up determine the LLP switchgear configuration. The LLP

software makes use of several communications software driver packages. These drivers

simplify communications between the LLP, the switchgear and the Solbourne workstation

running FRAMES. With the communications drivers and the LLFs, the LLP software can

maintain and control a load center or a power distribution control unit.

2.1 Switching Operations

The LLP software commands switches within the load center or PDCU by issuing

an on or off command for the given switch as needed. The format of these commands is

defined by the LLP/SIC Interface Control Document (Appendix VI). Switching operations

are mainly used for schedule execution. However, they may also be used in fault isolation,

redundant switching, load shedding, and manual operations commanded from the

SSM/PMAD interface.

2.2 Schedule Execution

When running in autonomous mode, the LLP executes a schedule of events for

commanding specific switches on or off. These events within a schedule happen at specific

times during the mission. The LLP will wait for the time of the event to pass before

actually processing that event. The event also contains maximum and minimum current

specifications for the load on the output of the switch. This load information is used in the

limit checking function. Additionally, the event contains information on whether or not the

load is redundantly sourced and if there is permission to switch to redundant power in the

event of a fault.

The schedule of events, known as an event list, arrives at the LLP via communications

from the SSM/PMAD interface. The format of this list is defined in the LLP/FRAMES

Interface Control Document (Appendix V).

SSM/PMAD LLP Reference
I1-3

AppendixII
SSM/PMADLLP Reference

Interim

FinalReport MCR-89-516
VolumeII July 1990

2.3 Load Shedding

Load Shedding occurs in three ways. First, an immediate source power change is

received at the SSM/PMAD interface and the FRAMES system generates a shed list which

is passed to the LLP. Second, the LLP may shed a load if the amperage limit check for that

load is out of range. Last, a redundantly sourced load moves to the alternate bus and

bumps a load on that bus of lower priority. This will only happen if there is not enough

power available on the redundant bus. Load shedding is an important method of

controlling power usage on a given bus.

2.4 Fault Reporting

Several classes of faults may be discovered and reported at the LLP Software. The

first class is hard faults; defined to be any situation which causes a switch to physically

trip. An example of this would be a short on the output of the switch. The soft fault is

another type of fault which is defined to be an illegal use of current in our system. At

present, only limit checking looks for this type of fault. When a fault is detected at the

LLP, the LLP sends an anomalous message to the SSM/PMAD interface. At this point,

FRAMES will ask all relevant LLPs to send a quiescent data message when each LLP

reaches a quiescent state. A quiescent state is defined as when all the fault data is identical

to the fault data of the previous pass through the LLP's main program loop. Once all

relevant LLPs have responded with quiescent messages, FRAMES will request switch and

sensor status from all LLPs to get a snapshot of the system after the fault has run its

course. Upon sending Up the quiescent data, the LLP has finished the task of fault

reporting for the fault in question.

2.5 Fault Isolation

Fault Isolation is used by FRAMES as part of diagnosing a probable cause for a

given reported fault. When FRAMES is advised of a fault by an LLP, It may be necessary

to reclose some of the switches in an attempt to repeat the fault. With this in mind, the LLP

accepts commands to turn on and turn off given switches. The LLP immediately takes a

new data set from the switchgear and looks for new trips. FRAMES requests new switch

and sensor status lists to see if anything new happened. By using this process, FRAMES

can make a probable fault diagnosis.

=

i

SSM/PMAD LLP Reference
II -4

V

Appendix II

SSM/PMAD LLP Reference

Interim

Final Report MCR-89-516

Volume II July 1990

a ¸

2.6 Redundant Switching

The LLP software is set up to handle redundantly sourced critical loads. If a load is

redundantly sourced and the LLP has permission to switch to the redundant switch, the

LLP will attempt to repower the load on the redundant bus in the event of a fault. It should

be noted that the LLP will not be able to power the load off the redundant source if the LLP

cannot find enough power on the redundant bus. The LLP will load shed any load of

lower priority than the redundant load necessary to acquire enough power for the redundant

load. The software will not shed any loads if it cannot free up enough power for the

redundant load.

2.7 Performance Monitoring

The LLP Software monitors the performance of the switches and sensors it

controls. For the switches it computes a time based average of current passing through

each switch. Furthermore, it keeps track of the maximum and minimum current readings

for each switch as well as when they occurred. This computation is run over five minute

intervals or until a switching operation occurs. Either of these events will start a new

performance interval for a given switch. Before a new performance interval begins, the

accumulated data is sent to the SSM/PMAD interface. In the case of the sensors, the data

for all current, voltage, and temperature sensors is accumulated and used to compute time

based averages for each sensor. This data is sent to the SSM/PMAD interface on a five

minute interval.

2.8 Limit Checking

The LLP software performs limit checks on powered loads. The schedule passed

to the LLP contains maximum and minimum current limits for a given load. If the load is

pulling more current than is allowed, for more than one data accumulation cycle in a row,

the LLP will shed the load and inform the SSM/PMAD interface. If the LLP is a PDCU

and a switch is reading out of current limits, the LLP software will not shed the switch, but

it will inform the SSM/PMAD interface. Shedding a PDCU switch would remove power

from the load center bus below it, and this is obviously undesirable.

SSM/PMAD LLP Reference
II-5

AppendixII
SSM/PMADLLP Reference

Interim

Final Report MCR-89-516

Volume II July 1990

V

2.9 Configuration Determination

Upon power up of the LLP and its software, the LLP software determines the

configuration of the switches it controls. The LLP queries each SIC card for switch status.

The switch status response tells the LLP software how many and what type of switches it

controls. With this information, the LLP sets up the appropriate conversion constants for

the switch sensors. The LLP software then takes the configuration information and sends

it to the SSM/PMAD interface in the form of a configuration list (Appendix V). The

SSM/PMAD interface uses this information to represent the LLPs on the user interface.

2.10 Multiline Interrupt Driver

The Multiline Interrupt Driver (MID) by Parasoft was purchased to handle RS-422

serial communications between the LLP and the SIC. The LLP software needed a good

serial port driver to handle serial input. The operating system provides a serial port driver,

but the driver suppi_ed is-_nadequate for ser_ai-inpu_ because it does not buffer input and

data can be lost. The MID software is interrupt driven and buffers the communications at

9600 BAUD. MID is installed on the LLP at bootup, and it is configured as follows:

A) Number of Ports -- 2.

B) IRQ = 2, on both ports.

C) User service interrupt = 14H, on both ports.

D) UART base port addresses -- 3E8,2E8.

E) Transmit = 15000 bytes / Receive -- 15000 bytes, on both ports.

F) 9600 BAUD, Even Parity, 8 Bits, 1 Stop Bit, on both ports.

G) XON/XOFF for both transmit and receive, No hardware handshake,

Short Timeout, on both ports.

2.11 CMC Ethernet Driver

The other driver used by the LLP Software is an ethemet device driver which came

with the Communications Machinery Corporation (CMC) ethernet card. The ethernet

driver software and ethernet board were selected for this project because they have an

assembly level interface capability to their device driver software. Access to this assembly

level interface is driven by common software interrupts. This made interfacing with the

V
SSM/PMAD LLP Reference

I1-6

AppendixII
SSM/PMADLLPReference

Interim

Final Report MCR-89-516

Volume II July 1990

LLP software, written in pascal, relatively easy. The CMC software is configured for 2

ethernet channels, 1 Internet Protocol channel, 2 User Datagram Protocol channels, and 4

Transmission Control Protocol Channels. The driver software is also configured for

Netbios emulation, and beginning memory address location A0000h.

SSM/PMAD LLP Reference
I1-7

AppendixII
SSM/PMADLLP Reference

3.0

Interim

Final Report

Volume II

ill i I

MCR-89-516

July i990

LLP Hardware

LLP hardware consists of two distinct types. The first type is the computing

hardware platform upon which the LLP software runs. The second type is the power

hardware referred to as switchgear. The LLP software commands and controls the

switchgear from the computing platform. Both types of hardware have multiple interacting

components and a specific configuration which must be maintained in order for the LLP

software to function properly.

3.1 LLP Computing Hardware Overview

The LLP computing hardware consists of a Quimax 20 MHz motherboard with

1Mbyte of RAM rehosted into an Integrand rack mount chassis with a 135 watt power

supply. This base computer contains five peripheral devices, a 1.2 Mbyte 5 1/4 inch

floppy disk drive, a monochrome graphics card (Not Used), a keyboard (Not Used), a

Sealevel Systems Dual-SIO dual port RS-422 serial communications card, and a

Communications Machinery Corporation ethernet adaptor. The keyboard and monitor are

not used in running the full SSM/PMAD system as the LLP software operates

autonomously.
V

3.1.1 LLP Motherboard Configuration

The Quimax 20 MHz motherboard is configured to run only in 20 MHz mode. The

motherboard and computer may be reset by pressing the button on the front panel of the

rack mount chassis. The motherboard is presently configured to operate without a

keyboard, this may be changed by running the setup program upon boot up of the

operating system. Only one dip switch and no jumpers have been changed from the default

configuration on the motherboard. The motherboard has two serial ports and one parallel

port built in. The serial port operating on COM2: has been disabled by setting switch 2 of

SW1 to the on position. The serial port needed to be disabled because COM2: uses IRQ 3

which is the same interrupt being used by the CMC ethernet adapter. COMI: which uses

IRQ 4 is still available for use. The only other change required for the motherboard is in

the Integrand rack mount chassis power supply, The two wires of connector P8 closest to

the backplane must be tied together for the computer to boot without a BIOS error. This

requires clipping the backmost lead going into the connector and electrically tying the lead

SSM/PMAD LLP Reference
H-8

AppendixII
SSM/PMADLLP Reference

Interim

Final Report MCR- 89-516

Volume II July 1990

v

going into the connector to its nearest and only neighbor. This leaves the original wire

from the power supply to where it was cut which must be electrically sealed. This change

ties power supply ready directly to 5 volts (asserted) as soon as the power supply comes

up.

3.1.2 RS-422 Card Configuration

The Sealevel Systems Dual SIO RS-422 serial communications card allows the LLP

to communicate using two separate RS-422 ports. The RS-422 card has been modified in

order to optically isolate the communication receive data lines. The SIC card provides

optical isolation for the transmit lines. By optically isolating the communications, it is

unlikely for a power system surge to pass through and damage the computing hardware.

Installation of the optical isolation modification requires the removal of the SN75173 IC

from the socket at U4 on the RS-422 card. The modification also requires the removal of

R11, R15, R16, and R20 from the RS-422 card. The SN75173 IC must be plugged into

the optical isolation modification and the optical isolation modification plugged into U4 of

RS-422 card. The optical isolation modification schematic is shown in figure 1. The DIP

switch and jumper settings are configured as shown in figure 2. The DIP Switches S 1 and

$2 are used to set UART base port address locations. The jumpers E1 and E2 set the RS-

422 card IRQ number for their respective ports; presently they are both accessed on IRQ2.

3.1.3 Ethernet Adapter Configuration

The CMC ethernet adapter is used by the LLP software to communicate with the

SSM/PMAD interface. The ethernet card has been configured for IRQ3 by moving the

jumper on JP7 from 4 to 3. The ethemet adapter has been configured for IEEE 802.3 thick

wire communications. This was done by moving the IC in U69 to U68. All other board

jumpers and switches were left in the default factory configuration.

The LLP uses different IRQ numbers for different devices. IRQ2 is used for RS-422

<-_....J

SSM/PMAD LLP Reference
11-9

Interim

AppendixII FinalReport
SSM/PMADLLP Reference VolumeII

MCR-89-516

July 1990

75173
4 PlugIn

U4
6

14

12
11

56

442

2k

2k

Figure 1 -

1
2

75173
4 Socket

for Chip
from U4 2k

Optical Isolation Modification

2k

S1

1
2
3
4
5
6 Ill
7

8 ill
OffOn

$2 E1

1 i I 2_

2 • 300

31 400
4i
511 500
6 • 2_
711
8 i 3OO

Off On 40 •

5OO
E2

E3

O0

O0

Figure 2 - RS-422 DIP Switch and Jumper Settings

SSM/PMAD LLP Reference
II-10

AppendixII
SSM/PMADLLP Reference

Interim

FinalReport MCR-89-516
VolumeII July 1990

communicationandIRQ3 is usedbytheethemetadapter.This meanstheRS-422cardhas

higher interrupt priority than the ether'netadapter.This wasdonebecausethe ethernet
adapter has its own on board processorand memory and it can therefore buffer
communicationsto acertainextent.

3.2 Switchgear Overview

The LLP switchgear hardware consists of Switchgear Interface Controller (SIC)

cards, Generic Controller (GC) cards, Analog to Digital (A/D) card, sensors, and switches.

The LLP software communicates only with the SIC card. The SIC card in turn may talk to

up to fourteen GCs, but is limited to nine by a card cage constraint. Each GC controls a

switch. The SIC may also talk to the A/D card which may read sixteen current, sixteen

voltage, and sixteen temperature sensors. In this manner, the LLP software has its data

collected by the SIC card on command and returned for processing.

,....,w j

3.2.1 Switchgear Interface Controller

The SIC card responds to a four byte command it receives from its RS-422 receive

data lines. To acquire data from the GC cards and their attached switches, the SIC card

will assert the GC card in question's data enable line and wait for a two byte response. To

accumulate data from the A/D card, the SIC card asserts the start conversion line to the A/D

and collects the response in a buffer. The SIC card can be be issued nineteen different

commands from the LLP and these are described in the LLP/SIC Interface control

document (Appendix VI).

3.2.2 Generic Controller

The GC card actually contains two generic controllers on each card. The top genetic

controller circuit is controlled by the SIC on the tight side of the card cage (as seen from the

front of the card cage). The bottom genetic controller circuit is controlled by the SIC on the

left side of the card cage. The GC actually issues an on or off command to the switch. The

GC is also respt.,sible for turning the switch off in the event of a trip situation. The GC

card handles all trip situations except fast trip. These situations include ground fault,

overcurrent, surge current, over temperature, and under voltage. It should also be noted

that there are two types of GCs, the older ones which could handle the old AC switchgear,

SSM/PMAD LLP Reference
II-11

AppendixII
SSM/PMADLLP Reference

Interim

FinalReport
VolumeII

andthoseGCsdesignedspecificallyfor DC.

MCR-89-516

July 1990

3.2.3 Switches
Thereare threevarietiesof switches:RemoteBus Isolators(RBIs), one kilowatt

andthreekilowatt RemotePowerControllers(RPCs). TheRPCsweredesignedto break

currentwhencommandedoff andalsocontainaselfprotectionfasttrip circuit in theevent

of adeadshortacrossthe output terminalsof the switch. The RBI wasnot designedto
breakcurrent and shouldalways be switchedwith no current flowing. The RPC/GC

combinationprovidesa very good current limiting switch that will trip on a variety of

faults. Moreover,theLLP softwareacquiresanytrip informationwhenit requestsdataon
theswitch.

3.2.4 Sensors

There are three types of sensors; current, voltage, and temperature. The current

sensors have 2 ratings, either 50 or I00 amps, whatever is necessary for where they are

placed in the topology. The voltage sensors have only one rating; 120 volts. The

temperature sensors are rated based upon their thermocouple. All of the sensors return 5

volts at twice there rated value. The A/D card will register a fully set 8 bit word for a 5 volt

reading.

x..,,'
SSM/PMAD LLP Reference

II-12

Appendix H

SSM/PMAD LLP Reference

Interim

Final Report MCR-89-516

Volume II July 1990

4.0 Future LLP Concerns
In the future, it may be necessary to put a flight system together similar to the

SSM/PMAD breadboard. Such a system would probably have algorithmic software and

smart power hardware on board the spacecraft. The expert systems and artificial

intelligence systems would probably be ground based. Communication between the expert

systems and the lowest level processors would occur via a telemetry link. This raises

several important points: First, by minimizing communication across the telemetry link,

expenses of communication will be likewise minimized. Second, the LLPs will need to be

able to operate autonomously for large periods of time in the event the telemetry goes

down. Third, the reliability of the switchgear hardware must be improved. Lastly, the

LLPs or the switchgear they control should be controllable locally on board the spacecraft

should it become necessary to take control manually. How to accomplish this capability

will now be discussed.

4.1 Feasible LLP Solutions

Communications may be minimized by migrating some of the fault diagnosis

capability to the LLPs. This might be done by changing the communications architecture

such that a load center reporting a fault would report it f'trst to its controlling PDCU and all

appropriate testing be done before shipping the data to the SSM/PMAD interface for

diagnosis and rescheduling by MAESTRO. Another issue is how best to improve long

term autonomy for the LLPS. A good way to establish long term autonomy at the LLPs is

to provide them with longer schedules as well as some amount of schedule recover

mechanisms. A longer schedule requires more memory on the LLP. The next issue is

improved reliability. The good way to improve reliability in the switchgear is to decrease

the number of components. Presently there are around 100 elements of switchgear.

Suppose that each of these components has a reliability of 99.5%. When all of these

components are integrated together, the reliability of the system would potentially drop to

about 60%. Clearly, with fewer components, there are fewer places for failure. One place

for switchgear consolidation is the GC/RPC interface, this may be accomplished by

building an intelligent RPC with all the relevant GC functionality. Another possible place

for consolidation would be the sensors; make the sensors directly readable from the LLP

controller. If the LLP is already reading all of the sensor data, make the new intelligent

SSM/PMAD LLP Reference
II-13

Appendix1I
SSM/PMADLLP Reference

Interim

FinalReport MCR-89-516
VolumeII July 1990

switchdescribedabovedirectly interfaceableto theLLP controller. If theswitcheswere

directly interfaced to the LLP controller, the LLP would be able to control as many
switches as could be interfaced. It should be noted that as additional switches are

interfaced, the performanceof the LLP would degradeto somedegree. Making the

switchesdirectlyinterfacedto theLLP controllerwouldeliminatetheneedfor theSIC card.

Implementingall of theabovesuggestionswouldeliminatetheneedfor A/D, SIC,andGC
cards. This would drastically cut the numberof componentswithin the switchgear.

Moreover,theLLP functionalitywouldnot beaffectedandthereliability would increase.

An accessiblelink to control of thepower systemshouldbea requirementsothat in the

eventof acatastrophe,thoseaboardthespacecraftwill havecontroloverthepowersystem.
This could beaccomplishedwith a manualcontrol interfacedirectly tied into the LLP
functions.

SSM/PMADLLP Reference
11-14

AppendixITI
SSM/PMADTechnicalReference

Interim
Final Report

Volume1I
MCR-89-516

July 1990

APPENDIX III SSM/PMAD TECHNICAL REFERENCE

SSM/PMAD Technical Reference
III

V

SSM/PMAD Technical Reference

Version 1.0

Joel D. Riedesel

Martin Marietta Space Systems

P.O. Box 179, MS: S-0550

Denver, Co. 80201

jriedesel@den.mmc.com

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

Contents

1 Purpose of this Manual 1

2 SSM/PMAD Breadboard Design 2

2.1 System Design 6

2.2 Detailed Design 9

3 SSM/PMAD Interface 15

3.1 The View of the Breadboard 15

3.2 Overall Control 15

3.3 User Interface Functions 17

3.4 Communications Functions 22

3.4.1 Managing Communication Connections 23

3.4.2 Transactions :26

3.4.3 Utility Communication Functions 49

3.5 Utility Functions 51

FRAMES Technical Reference 54

4.1 The FRAMES Architecture 54

4.2 Multiple Faults in SSM/PMAD 55

4.3 The FRAMES Knowledge Base 56

4.3.1 The FRAMES Domain 59

4.4

4.3.2 The Hard Fault Expert System 103

4.3.3 The Soft Fault Expert System 138

Function Reference 1-t 1

KNOMAD-SSM/PMAD Technical Reference 143
5.1 The Database 1-t-t

5.1.1 Tuples and Views 144
5.1.2 Database Constraints 145

5.1.3 Facts and Frames 1-16

5.1.4 Assertions and Retrievals 148

5.1.5 Locks 149

5.1.6 Initialization 149

5.2 The Rule Management System 150

5.2.1 The Knowledge Base 150

5.2.2 The Rule Group 152

5.2.3 Rule Croup Methods 154

5.2.4 Rule Semantics 156

SSM/PMAD Technical Reference
III-ii

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

5.3' Adding Tools to KNOMAD-SSM/PMAD 156

A Suggested Readings 157

B KNOMAD-SSM/PMAD BNF Syntax 157
B.1 Definitions 157

B.2 Rule Management System 158

B.3 Frames 159

B.4 Database Assertions 160

B.5 Integrity Constraints 160

g

SSM/PMAD Technical Reference
III-iii

' V

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

List of Figures

1

2

3

4

5

6

Power System Network Topology 6

SSM/PMAD Architecture Hierarchy 7

SSM/PMAD Breadboard Control Loops 8

SSM/PMAD Breadboard Configuration 10

Hardware Communications 11

KNOMAD Layered Architecture 143

SSM/PMAD Technical Reference
III-iv

V

_lmlf Ae

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

--_ List of Tables

Processes Ports and Hostnames

transaction-table

* transaction- address*

24

30

31

SSM/PMAD Technical Reference
III-v

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

1 Purpose of this Manual

This manual is intended for the maintenance and development of the SSM/PMAD bread-

board. It describes in detail the SSM/PMAD breadboard) This manual assumes the reader

is familiar with the SSM/PMAD breadboard and has at least read appendix I of this re-

port, the SSM/PMAD Interface User Manual. Section 2 describes the overall design of the

breadboard, the various functions of it, and how they interact with each other. The parti-

tioning of algorithmic (and AI) functions to hardware components, whether circuit boards

or computers, is also discussed. In some cases, the reason for the placement of a particular

function on a piece of hardware is not absolute but rather, is in terms of convenience.

The design of the SSM/PMAD breadboard includes many functional components includ-

ing the LLPs, FELES, LPLMS, MAESTRO, FRAMES, and KNOMAD-SSM/PMAD aS well

as hardware functions. Each of these will discussed in section 2 as part of the overall de-

sign. The manner in which these components interact with each other is also of primary

importance and has been described as three nested control loops in one paper IRMA]. These
interactions will also be described.

Section 3 will provide a detailed description of the design and implementation of the

SSM/PMAD interface. This includes descriptions of the user interface, communications,

control operations, and utility functions. The SSM/PMAD interface provides a model of

the SSM/PMAD breadboard. By understanding the SSM/PMAD interface, the system

designer will understand how the various components are integrated together in a conceptual

perspective as opposed to a functional level as described in section 2.

Section 4 provides a detailed description of the FRAMES knowledge base as well as

associated algorithmic functions to support it. This section will describe the expert systems

and the domain and possible modifications.

Section 5 describes the design and implementation of K._ o Ma D-SSM//" MA D. It includes

a description of the database, the database interface, the rule management system and the

usage of these elements.

Appendix A of this appendix provides a list of suggested readings for information about

both the SSM/PMAD breadboard and KNOMAD-SSM/PMAD.

Appendix B provides the designer with the current syntax of I,: s o MAD- SSM/ e M_ D.

tThis work was performed under contract NAS8-36433 to NASA, Marshall Space Flight Center.

L ./ SSM/PMAD Technical Reference
III-1

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report M CR-89-516

Volume II July 1990

2 SSM/PMAD Breadboard Design

The SSM/PMAD testbed, an abbreviation for Space Station Module Power Mangement and

Distribution, is a project of the Electrical Power Systems group at NASA, Marshall Space

Flight Center. The goal of the testbed is to build a breadboard containing both hardware

and software components for researching techniques to automate a power management and

distribution system that could be applicable to Space Station Freedom. This document will

describe Version 1.0 of the SSM/PMAD Breadboard. This version could be considered as

the second implementation. The first implementation both achieved the goal and proved the

concept but was not very robust. 2 Version 1.0 tremendously improves the robustness of the

breadboard, while also adding functionality and ease of use.

The autonomous power management and distribution problem consists of the following

requirements:

• Switches that control power to loads.

• The ability to schedule activities using power as a resource and have the schedule be

executed by the power system to enable the loads.

• The ability to detect, diagnose, and recover from power system faults.

• The ability to operate autonomously.

These very high level requirements of the SSM/PMAD testbed make the problem sound

fairly simple, but the design is actually quite complex, involving a large amount of both

hardware and software.

Given the stated goal and requirements, the SSM/PMAD breadboard has gradually

evolved to its current architecture. The architecture of the breadboard is the topic of this

section and will be described in detail in the following two subsections. A system level design

description will be given followed by a subsection which goes into detail explaining how the

components are integrated into the completed breadboard.

As an overview of the functionality of the breadboard, the rest of this introduction to the

breadboard design will describe the functionality of the hardware and software components

that were necessary for the SSM/PMAD testbed to meet its goal. These components range

from software utilizing artificial intelligence techniques to advanced development of hardware

components for remotely operating switches controlling power.

The functional components of the breadboard can be described in three layers 3. The first

layer, where power is shunted through switches, is the s ' ;tchgear layer--composed entirely

2See [MJA*] for a description of the first delivered implementation.
3These layers are referred to in the following sections as the first, second, and third layers, or as the

bottom, middle, and top layers, respectively.

V

k..2

SSM/PMAD Technical Reference
III-2

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII _ July 1990

of hardware. The functional components(from a systemoperationsperspective)of this layer
are:

Switches Various types of switches detect and control against a low-impedance shorts in

the power system. These switches are remotely operatable, receive commands to open

or close, and transmit trip data. Since the design of the Space Station Freedom power

system was not finalized at the beginning of the contract, there was a need for both

DC and 20KHz AC switches.

Switch Controllers In order to operate different types of switches, a generic controller

was developed. This controller identifies different types and characteristics of switches

and determines over-current, ground fault, under voltage, over temperature, and surge

current trips. In the case of these trip conditions, for a particular switch in question, the

controller collects data from the switch, identifies the trip condition, trips the switch

off, and transmits the trip data. The controller receives commands and transmits

switch data and trip information.

Sensors The ability to make intelligent decisions about an artifact is directly related to the

amount of information that is available from it. The switches, through the switch con-

trollers, supply some information about the power system. Sensors are also required to

provide further information. This is comprised of additional information not available

from the switches. Sensors also provide the ability to determine soft faults (an illegal

use of current, probably the result of a high-lmpendance short to ground somewhere in

the power network). Sensors transmit their sensed data to an A/D card for conversion
and transmission.

Analog to Digital Conversion Analog to digital converters provide the means to inter-

pret analog sensor data and provide it to other components for analysis.

Interface Controller The final hardware component necessary to operate a complex set

of switchgear is the interface controller. This component interfaces between the lowest

layer of software and the switchgear. It provides the ability for the software functions
above it to receive data from switches and sensors as welI as command switches on

and off. The interface controller may interface to many individual switch controllers,

providing a level of multiplexing.

The second layer of functional components is the set of software components that provide

the deterministic algorithms for the SSM/PMAD breadboard. These are:
; y:'

Schedule Execution A schedule of switch commands for enabling the loads of a scheduled

set of activities is used to command the switches open and closed. This simple schedule

execution function must maintain an accurate representation of clock time. A schedule

SSM/PMAD Technical Reference
III-3

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

consistsof a list of events,while eachevent specifieswhat switch to command, the
particular command,and maximum and minimum amperageand power limits for the
switch.

Performance Monitoring In addition to commanding switchesopen and closed in re-
sponseto a schedule,performancemonitoring is usedto track the power,voltage, and
amperageof switch and sensordata. This data is usedby other functions as well as
being averagedfor a generalutilization function by which the operator may observe
power utilization of the system.

Fault Detection A function for detecting that a switch has tripped must be available to
inform the fault diagnosisfunction of the fault. This function can detect any of the
typesof trip a switch can trip or be tripped on.

Limit Checking A schedule provides limits on amperage and power utilized through a

switch. Therefore, a limit checking function must exist to make sure that the power

and amperage being utilized through a switch is within the set bounds.

Load Shedding When a switch is consuming more than allowed, it may be commanded
off and the load below it shed. This function enforces the rule that user's loads follow

their specification, and as soon as they operate out of bounds, the load may be shed.

Redundant Switching If there is contingency (e.g., when a switch trips), an important

load may need to switch to the redundant power supply. This information is present

in the schedule. A redundant switching function must exist to perform this operation

when necessary.

Fault Isolation To support the fault diagnosis function, fault isolation must be performed.

This is a function that conceptually resides at both the second and third layers of

functionality. Fault isolation is performed by both the fault diagnosis function and

supported at the second layer by the low level fault isolation function which commands

switches on and off. This is entirely analogous to the schedule execution command but
used for fault isolation.

The third and final layer of components consists of the set of functional software compo-

nents that provide the high-level intelligent control to the breadboard. These are functions

such as scheduling and fault diagnosis. They are:

Schedule Interface For the operator to specify a set of ac t. ities to be scheduled, an

interface must be provided. This fmiction is used to specify activities and define

equipment and their connections to the power system resources. The interface also

provides the ability for the operator to schedule the selected set of activities.

SSM/PMAD Technical Reference
III-4

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II : July 1990

Schedule The schedule function is a high level tool that takes a set of activities, their

equipment and a set of available resources as input and produces a schedule for the

subset of activities that makes efficient use of the resources. This function enables

the operator to efficiently produce schedules for a Space Station Freedom environment

without being burdened by too many options.

Operating Interface The operator needs to be able to interface with the breadboard. This

is accomplished via the main interface to the breadboard. This interface provides the

operator actual control of the breadboard, whether the breadboard is being operated

manually or autonomously. The operator is able to manually command switches and

observe data from the switchgear using this interface.

Schedule Conversion A schedule as produced by the schedule function must be converted

to a schedule of events for commanding switches open and closed. This process includes

collecting information about operating limits for the activities and including that in

the schedule of events as well (for example, maximum and minimum amperage limits,

redundant power sourcing, etc.).

Priority Generation The functions of load shedding and redundancy switching involve

possible shedding of loads of lower priority. The priority generating function is respon-

sible for determining priorities on loads (and thus, switches) that are in synchronization

with the schedule. The load shedding and redundant switching functions use the gen-

erated priority list to help determine how to perform their respective function.

Fault Diagnosis The fault diagnosis function is responsible for collecting data from the

fault detection function and perform isolation to determine a diagnosis. A diagnosis is

one part of the fault detection, diagnosis and recovery process of a robust autonomous

system.

Fault Isolation The fault isolation function at this level is responsible for generating a list

of switch commands for the fault isolation function at the second layer. Fault isolation

uses the results from commanding the switches to help with the fault diagnosis.

Fault Recovery Fault recovery is used after fault diagnosis to inform the scheduler of

switches that are no longer available in the power system. The scheduler function will

then reschedule activities based on this new information to develop a new schedule

that making efficient use of the remaining resources.

The above functional requirements of the SSM/PMAD breadboard provide ,_ very high

level description of the entire breadboard and what its necessary components are. The next

two subsections will describe the design of the breadboard in much greater detail including

the actual components designed under the contract.

SSM/PMAD Technical Reference
III-5

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

BUS A
PDCU-A

0

LLP
SIC

LLP

SIC

BUS B
PDCU-B

O

O

_ RBI [] Load o Sensor(_) 3k RPC [----]Ik RPC

Figure 1: Power System Network Topology

2.1 System Design

The SSM/PMAD breadboard is a testbed to model the Space Station Freedom power man-

agement and distribution system. The most distinguishing feature of the breadboard is the

power system. The power system topology is shown in figure 14. This topology shows a

star bus configuration where each power bus is distributed through a power distribution

control unit and to a number of load centers. The figure shows the first layer of functional

components of the breadboard and how they are interfaced to the power system.

The power system topology implements the first layer of components by designing and

building the various hardware pieces to meet the first layer of functional requirements. These

elements are shown in the figure and described as follows. The switches are one kilowatt,

three kilowatt, and 15 kilowatt remotely operable devices. The RBI is a remote bus isolator

and is a relatively simple switch that can be remotely commanded on and off but will not trip.

The 1K and 3K switches are remote power controllers (RPCs) that are smart switches. Thcv

will trip on a low-impedance short. The switch controller is a generic controller (GC) (not

depicted in the figure) that adds further logic to the switches. In the case of an RPC, it will

detect high-impedance shorts that will result in an i2t trip as well az low voltage situations

4The figure only shows one load center; as can be seen from the PDCUs, however, there may be up to
six load centers.

1 1i i ii i i

SSM/PMAD Technical Reference
III-6

Appendix III

SSM/PMAD Technical Re:,:,rence

Interim

Final Report
Volume II

M CR-89-516

July 1990

SSM/PMAD

System Architecture

I
I I

Hardware Software

Component Component
[I

I I [[
Power and Automation Deterministic Knowledge

Switchgear Machinery Processes Bases

• RPC * Solbourne • LLP Functions • FRAMES
• RBI • Symbolics • Interfaces • MAESTRO
• Sensor
• GC • 80386 PC • FELES * LPLMS

• A/D
• SIC

Figure 2: SSM/PMAD Architecture Hierarchy

that will result in an under voltage trip. The GC allows both AC and DC switches to be

controlled. Version 1.0 of the breadboard is implemented with only DC switches.

Sensors are depicted in the figure and are implemented in different sizes depending upon

the rating of the sensed current. Current sensors are either 50 or 100 amps. All voltage

sensors are 120 volt DC sensors. The analog to digital converter is shown in the figure and

is used to collect analog data from the sensors and digitize it.

The switchgear interface controller (SIC) allows communications between the hardware

and upper layer software components (shown in the figure). There is one SIC for each bus

of a load center and one SIC for each PDCU.

The LLP shown in the figure is a lowest level processor. The LLP implements the

functions of the second layer and is currently based upon an 80386 PC clone.

In summary, the figure shows the power system network topology as well as the LLP

which implements the second layer functions. The power system topology is interesting

because it is distributed. Each load center or power distribution control unit is operated

by a different LLP. This gives the power system some robustness such that if part of the

power system fails, the rest may keep operating. The power system and switchgear hardware

components are described in detail in [And].

To continue illustrating the design of the breadboard, figure 2 shows the partitioning of

the functional components to hardware and software. The power and switchgear hardware

was discussed above in relation to figure 1. The other hardware consists of the computer

systems used to execute the software functions of the breadboard. These are the 8038C ?Cs,

the Symbolics, and the_Solbourne. The LLPs (implemented on the 80386 PC) are used to

implement the second layer functions described earlier which include, for example, schedule

execution, performance monitoring, fault detection, and limit checking. The Solbourne and

SSM/PMAD Technical Reference
III-7

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

L4: Minutes SSM/PMAD
Interface &

)erations

MAESTRO
FELES
LPLMS

LLP

FRAMES

'L3: Seconds-Tens of Seconds

SiC L2: dSeconds-Seconds

GC

RPC

LI: mSeconds

L0: /_Seconds

Figure 3: SSM/PMAD Breadboard Control Loops

the Symbolics are used to implement the third layer functions including the interfaces, the

scheduler, and the fault diagnosis system.

The other objective of figure 2 shows how the second and third layer functions are par-

titioned into deterministic and knowledge-based implementations. The LLP functions are

all those second layer functions described earlier. The interfaces, both to the scheduler and

the SSM/PMAD breadboard, are considered deterministic algorithms. FELES is the Front

End Load Enable Scheduler which performs the necessary schedule conversion function of

the third layer.

The knowledge-based functions are all functions of the top layer and currently consist of

FRAMES--the Fault Recovery and Management Expert System, MAESTRO--the sched-

uler, and LPLMS--the Load Priority List Management System.

The general operation of the SSM/PMAD breadboard, in terms of general data flow

and control loops, is shown in figure 3. The figure is intended to show that operation of the

breadboard is controlled by the SSM/PMAD interface. A schedule is created by MAESTRO,

converted by FELES to a list of switch commands, and is made available to the SSM/PMAD

interface. The schedule of switch events, along with a priority list from LP.'. IS, is given to

the LLPs. The LLPs then command switches on and off via the SIC.

There are five control loops shown in the figure. Control loop Lo is contained entirely

in hardware on the RPC. This control loop monitors current through the switch and will

gSM/PMAD Technical Reference
III-8

Appendix Ill
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

x,.../

trip the switch on a fast trip if a low-impedance short is detected. This is the only real-time

control loop and occurs in the region of microseconds.

Control loop L1 occurs between the GC and the RPC. In this loop, the GC monitors

both current and under voltage. The GC will trip the switch on ground fault, over current,

or voltage depending upon the data from the switch. This loop occurs in the region of
milliseconds.

Control loop L2 occurs between the LLPs and the RPCs. This loop is responsible for

limit checking, load shedding, redundancy switching, and the functions of the bottom layer.

This control loop can operate from tenths of seconds to seconds. The main performance

problem is that the A/D boards of the switchgear require a 1.5 second delay every time the

LLP needs to get data from them through the SIC.

Control loop La occurs between FRAMES and the switchgear. This is the loop for

performing fault isolation and diagnosis. As faults occur in the breadboard, FRAMES

takes over and performs fault isolation by commanding switches open and closed in order to

isolate the location of the fault. Once the fault has been determined a diagnosis is made.

This control loop operates in the seconds to tens of seconds range. Commands as a part of

fault isolation can be executed in seconds, but a fault diagnosis may involve a sequence of

fault isolation steps resulting in performance on the order of tens of seconds.

Control loop L4 is the loop between the scheduler and the rest of the breadboard. This

loop is executed whenever a contingency occurs in the breadboard and rescheduling needs

to take place. At that time, FRAMES will inform the scheduler of the unavailable resources

and MAESTRO will perform contingency scheduling to make efficient use of the remaining

available resources. Control loop/-,4 operates within minutes.

This completes the high level description of the design of the SSM/PMAD breadboard.

The next subsection will describe the integrated design of the system that includes a discus-

sion of data communications between the components of the breadboard.

2.2 Detailed Design

Figure 4 shows the integration of the components of the SSM/PMAD breadboard. The

user interacts with the breadboard through the primary interface, the SSM/PMAD inter-

face. When scheduling, the user interacts with the scheduler interface which resides on the

symbolics. The user manual (appendix I of this report) describes how to use tile breadboard.

The hardware is organized such that the SIC communicates to the RPCs and RBIs via

the GC cards. The SIC also collects sensor data via the A/D board. The second layer of

functions is impleTnented on the LLP using the 80386 PC environment. The LLP is used to

interface to the hardware via the SSM/PMAD interface.

The third layer of functions is partitioned to the Symbolics and the Solbourne. MAE-

STRO, the scheduler, is implemented on the Symbolics as is FELES and LPLMS. The

SSM/PMAD Technical Reference
III-9

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

User [

Scheduler Interface

• MAESTRO
• FELES
• LPLMS

Symbolics 3620

User 1

SSM/PMAD Interface

• FRAMES
• KNOMAD-SSM/PMAD

] Ethernet

LLP [80386 PC

as-423 J [

'l lib [[, Enable Lines

HS]g ,..

LLP] 80386 PC

IJ • •

Solbourne 5/501[

Figure 4: SSM/PMAD Breadboard Configuration

SSM/PMAD Technical Reference
III-10

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

I Lowest [

Level
Processor

, LP/S cco - I [L PmC
and Response | _.Command

I 1,Switchgear I Enable Generic
Controller

Interface Card

Card _- I (x 14)RPC Data

Digitized Analog | [

S or WorkT.p 10°/O

Analogto r I
Digital Powe

Card Bus --4-
AorB [

Analog

Sensor Inputs

Current,

Voltage, and

Temperature

[Sensors

[(x a6)

Remote _L

Power

Controller

(Switch)

(x 14) onds

Figure 5: Hardware Communications

SSM/PMAD interface and FRAMES is implemented on the Solbourne computer. K NO MAD-

SSM/PMAD is used as the support environment for FRAMES and the SSM/PMAD interface.

The higher level functions, second and third layers, communicate using TCP/IP over

ethernet. The LLP communicates to the SIC using RS-423.

Figure 5 provides a representation of the hardware components and their integration with

one another. The LLP may send a command to the SIC to retrieve data from the A/D card,

or from the GC card. The LLP may also command a switch via the GC. Data is sent back to

the LLP from the SIC. The interface control document for the LLP and SIC communication

is given in appendix VI of this report.

The LLPs do not perform any functions without direction from the SSM/PMAD inter-

face. When the SSM/PMAD breadboard is being operated, the SSM/PMAD interface sends
commands to the LLPs and collects data from them. These transactions include obvious

things such as switch data, sensor data, and event lists. When a user requests data on a

switch, the SSM/PMAD interface sends a switch data query to the LLP and the LLP re-

sponds with a switch data transaction. When a user sends a request to turn on a switch,

the SSM/PMAD interface sends a switch control list to the LLP. The LLP then responds

SSM/PMAD Technical Reference
III-11

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

with a switch and sensor configuration transaction. The transactions that are used between

the SSM/PMAD interface and the LLPs are given in appendix V of this report. However,

appendix V is simply an ICD and doesn't describe the semantics of the transactions being

passed back and forth.

To start the breadboard, the SSM/PMAD interface sends an initialization transaction

to the LLPs. When the LLP initializes, it resets its internal states about the configuration

of the switches. The LLP will respond with switch and A/D conversion values lists and the

switch sensor configuration. The second step of starting the breadboard is to send a time
list to the LLPs. This sets the clock on the LLPs and finishes their initialization.

The LLP may be queried for many types of information to which it will respond. If

a switch is commanded on or off, the LLP will respond with a switch configuration list

to inform the interface of the new state of the switches. Furthermore, the LLP monitors

performance data of the switches and sensors and periodically sends up switch and sensor

performance lists.

To summarize, the following provides a brief overview of the semantics of the various

transactions between the LLPs and the SSM/PMAD interface:

Initialization List Sent by the SSM/PMAD interface to initialize the LLP. This must be

followed by a time list to finish the LLP initialization. The LLP will respond with

three lists when it receives an initialization: A switch conversion value list, an A/D

conversion value list, and a switch/sensor configuration list.

Time List Sent by the SSM/PMAD interface to the LLP to finish the initialization of the

LLP. The time list consists of the current time and the start of mission time. In the

case of manual mode, mission time is the same as the current time.

Event List The event list is a list of switch control events for commanding switches on and

off. This is sent from the SSM/PMAD interface to the LLP when the system is in

autonomous mode. In Version 1.0 of the breadboard, the event list provides a thirty

minute block of switch events for the LLP to use.

Priority List The priority list is sent from the SSM/PMAD interface to the LLP. This list

is used by the LLP when it needs to shed a load. It provides the information on which

loads should be shed first.

Contingency Event List This is sent to the LLP by the SSM/PMAD interface. It is used

when a contingency has occurred in the breadboard to primarily make sure the states

of all the switches are in the correct positions, and secondarily, to provide the next

event list used by the LLP.

Switch Control List Sent to the LLP by the SSM/PMAD interface. This is used in man-

ual mode to turn switches on and off. The LLP will respond with a switch configuration

list to let the interface know of the updated state of the switch.

V

i

SSM/PMAD Technical Reference
III-12

MM

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

Switch Conversion Constant List Sent to the LLP by the SSM/PMAD interface to

change the LLPs switch conversion constants.

A/D Conversion Constant List Sent to the LLP by the SSM/PMAD interface to change

the LLPs A/D conversion constants.

Query List Sent to the LLP by the SSM/PMAD interface to request information. Various

types of information may be requested including switch and sensor status, conversion

value lists, and the configuration list.

Switch Performance List Sent from the LLP to the SSM/PMAD interface. This list is

used to provide switch performance data to the interface. This is a time averaged

amperage usage for the switch.

Sensor Performance List Sent from the LLP to the SSM/PMAD interface. This list is

used to provide sensor performance data to the interface. This is a time averaged

power, voltage, and amperage usage for the sensors.

Switch Status List Sent by the LLP to the SSM/PMAD interface. This transaction pro-

vides detailed data about the switches to the interface.

Sensor Status List Sent by the LLP to the SSM/PMAD interface. This transaction pro-
vides detailed data about the sensors to the interface.

In addition to these ordinary transactions, there are some transactions used primarily for

the purpose of collecting data for fault diagnosis. This is termed as collecting a snapshot of

the power system (this snapshot collection procedure is fairly complex due to the distributed

nature of the LLPs). The current procedure tries to synchronize the data from LLPs as

much as possible based upon the speed of the Solbourne and the speed of the ethernet. The

procedure is as follows:

1. When an LLP first detects a fault in the switchgear, it sends a fault transaction to the

SSM/PMAD interface.

2. The SSM/PMAD interface then sends a quiescent transaction to each LLP.

3. Each LLP responds with a quiescent is true transaction when their data is in a stable

state.

4. The SSM/PMAD interface then sends a query for switch status information to each
LLP.

5. Each LLP then sends the switch status transaction as requested.

SSM/PMAD Technical Reference
III-13

Appendix [II
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

6. The SSM/PMAD interface then checksto seeif the Snapshotof the power system it
hasjust collectedis stable. If an LLP hashad newfault data during the data collection
stage, it will set a non-quiescentbit in the switchstatus transaction. If the snapshotis
not stable, the SSM/PMAD interfacewill repeat steps2-5 until a quiescentsnapshot
is achieved.

The usermanual (in appendix I) providesmore information on how transactions aresent
backand forth in the system.

The last pieceof integration in the SSM/PMAD breadboard is betweenthe Symbolics
and the Solbourne. This involves communicationsbetweenMAESTRO, FELES, LPLMS
and the SSM/PMAD interface. However, this is only neededif autonomousmode will be
used in the breadboard. If this is the case,event list, priority list, and contingency data
must be passedbetweenthe Symbolicsand the SSM/PMAD interface.

When the breadboard is being initialized and autonomousmode is being started, the
SSM/PMAD interface must initialize FELES. Initialization of FELES will direct FELES to
senda scheduleand priority list backto the SSM/PMAD interfacewhich can then distribute
it to the LLPs. When the SSM/PMAD interfacegetsthe start of missiontime from the user,
it issent to FELES so that it cansynchronizewith the rest of the breadboard. Autonomous
operation periodically sendsa schedule(for a period of time) from MAESTRO through FE-
LES to the SSM/PMAD interface. The priority list generatedby LPLMS is alsoperiodically
transmitted. When a contingencyoccurs, the SSM/PMAD interface sendsa contingency
start transaction to FELES. Any load sheds,switch to redundants,or out of servicesare
sent to FELES followedby a contingencyend transaction. FELES then directs MAESTRO
to generatea contingencyschedule.When MAESTRO finishesthat task, FELES sendsthe
newschedule,acontingencyevent list, and the newpriority list to the SSM/PMAD interface
and normal operationsresume.

In summaryof the systemdesignof the SSM/PMAD breadboard, the integration of the
various componentsis very complexand a large number of transactions are implemented
to keep the system operating correctly. The system cannot be understood simply in this
overviewwhich talks about systemdesignand integration; eachcomponentmust be exam-
ined in detail to understand the necessityof the varioustransactions and their impacts on
the various components.

SSM/PMAD-Technical Reference....
II1-14

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

3 SSM/PMAD Interface

The SSM/PMAD interface to the SSM/PMAD breadboard is documented in appendix I of

this report, the SSM/PMAD Interface User Manual. That document describes the interface

and the operation of the breadboard; here the SSM/PMAD interface is described from a

technical point of view.

3.1 The View of the Breadboard

The SSM/PMAD interface provides the managing environment for the operation of the
breadboard. It controls how the user interacts with the breadboard, through the user inter-

face. In so doing, the user's conceptual model of the breadboard is modified by what the

interface provides. Therefore a good interface will strive to provide both an accurate repre-

sentation of the artifact being interfaced to as well as provide a certain amount of simplicity

and abstraction to the artifact.

For the SSM/PMAD breadboard the user operates a complex environment of hardware

and software. The hardware consists of over 100 components that must be correctly oper-

ated. The software is likewise complex and must be operated in an integrated fashion to

properly control the breadboard. When the user desires to turn a switch on, the interface

should provide a conceptual model of turning a switch on that allows the user to do so in a

straightforward manner. The SSM/PMAD interface allows this by simply representing the

switch on the user interface. The user may then click on this switch to perform actions on it,

thereby manipulating the hardware and software components of the breadboard. The intri-

cate details of the system have been abstracted and simplified so that the user's conceptual

model of the breadboard is both accurate and simple.

This technical document will go a step further and describe the details of the SSM/PMAD

interface so that a system developer will have the tools available to make intelligent modifi-

cations to the interface.

3.2 Overall Control

The SSM/PMAD interface manages the entire SSM/PMAD breadboard, whether the user

operates it in manual or autonomous mode. This primarily involves the operation and control

of the software components of the breadboard. On the Solbourne, the SSM/PMAD interface

consists of the control functions for starting, operating, and stopping the breadboard. It also

uses the user interface module of the breadboard extensively to keep the user informed of the

state o r the breadboard. To provide the necessary integration between the various software

components of the breadboard that reside on different physical computers, an extensive set

of communication tools are also used by the SSM/PMAD interface.

SSM/PMAD Technical Reference
III-15

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

The primary mechanismwherebythe useris presentedwith the modelof-the breadboard
is the user interface. The userinterfacefunctions aredescribedin the next sub-section.The
communication functions are describedin the following sub-section. The communication
functions are a semi-intelligent set of functions that update various other modulesof the
SSM/PMAD interface automatically. This includes updating the user interface when a
switchstate changes,calling acontrol function whena fault isdetectedsothat fault diagnosis
can be performed,and alwaysupdating the databasethat is usedby all the modulesof the
interface. The last sub-sectionof this sectiondescribesafew utility functions usedby various
parts of the interface.

The rest of this sub-sectiondescribesthe control of the breadboardand the functions
used.

The SSM/PMAD interface relies heavily on the internal representationof the breadboard.
This representation is the domain and is defined in the frames .domain file. The fault
diagnosisexpert system,FRAMES, requires the domain file as part of its definition and is
the initial reasonfor having it in the first place. However, KNOMAD-SSM/PMAD provides

an integrated environment for a large number of modules/agents to work together and share

data in a controlled fashion. The domain also provides for the sharing of data between the

components of the breadboard in an organized fashion by taking advantage of K NOMAD-

SSM/PMAD. KNOMAD-SSM/PMAD will be discussed in a later section as well FRAMES.

Before the SSM/PMAD interface can be started by the user KNOMAD-SSM/PMAD must

be loaded. This is done automatically for the user. The interface is then started in earnest

by the loading of the domain file. The last statement of the domain file is a call to the
run-frames function.

run-frames [Function]

run-frames initializes the internal representation of the state of the breadboard and initial-

izes the user interface. It also starts the internal clock for the interface.

At this point the user will be presented with the user interface for the breadboard. In

terms of operating the breadboard, the only thing that has been done by run-frames is to

initialize the SSM/PMAD interface. The user must now initialize frames.

init ialize-frames how [Function]

initialize-frames takes one argument how. This argument may have one of four values:

:both, :bus-a, :bus-b, :none and is used for initializing the switches of the PDCUs ac-

cordingly. If how is :bus-a, when PDCU-A starts communicating with the interface it will

be commanded to turn on all its switches; however, PDCU-B will not be so commanded.

Initializing the breadboard with this function also starts up some important background

processes as well as bringing the user into manual mode.

SSM/PMAD Technical Reference
III-16

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

When the useris initialized and operating the breadboard,the usermay switch between
autonomousand manual modesof operation. Initially the userwill be in manual mode and
may move to autonomousmode.

autonomous -mode [Function]

tt autonomous-mode performs two important functions: The first function is to reset the

breadboard according to how it was initialized. That is, the PDCUs will be initialized

according to the how parameter of the initialize frames function. All the other load center

switches will be shut off. Autonomous mode of the breadboard is defined to work in a

well-defined state. When the user chooses to go into autonomous mode, the user is really

saying that the breadboard is going to be operated according to the schedule generated by

MAESTRO. The user forfeits any manual operations by making this choice.

The second important function is to start FRAMES. The fault diagnosis expert system

is loaded and initialized by going into autonomous mode.

When these two functions are completed, the symbolics is initialized and the user is

prompted for a time to start the mission.

manual -mode [Fu nct ion]

manual-mode may be selected at any time by the user when the system is in autonomous

mode. This function puts the breadboard back into manual mode of operation by clearing

the schedules that the LLPs are operating and by stopping FRAMES.

When the user is finished using the breadboard and is ready to bring the SSM/PMAD

interface down the stop function is used.

stop-frames [Function]

stop-frames is responsible for stopping all the background processes of the SSM/PMAD

interface as well as writing out log information to the various archive files. These archive

files will track every run of the SSM/PMAD interface by archiving all communications to

and from the interface and all messages to the status window and diagnosis window.

3.3 User Interface Functions

The SSM/PMAD user interface provides the user with access to the breadboard. It includes

various functions accessible from the menus as well as functions accessible from the objects

on the user interface themsclves. The user interface is initialized using the ui : : ram-frazaes

function.

SSM/PMAD Technical Reference
III-17

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

ui : :run-frames [Function]

This function, in the ui package, creates the user interface. If for some reason the user

interface becomes unusable, it may be possible to call this function to make a fresh one.

ui ::make-frames-l; itle-menus

ui ::make-frames-t itle-window

ui ::make-title-window

ui ::make-schematic-window

ui ::make-status-windov

These functions are all called from the ui::run-frames function.

[Function]

[Function]

[Function]

[Function]

[Function]

As their names imply,

they are for making the various windows and menus of the user interface.

ui : :xaln-framesl [Function]

This function is the last function called by ui::rtm-frames. It may be thought of as

a continuation of ui: :ram-frames. ui: :rtm-framesl does all the work of defining the

components of the schematic window, that is, the LLPs, the RPCs, etc.

ui::11p-window

ui::define-sensors

ui::define-rpc

ui::define-loads

ui::define-cables

[Function]

[Function]

[Function]

[Function]

[Function]

These functions are used by ui : : run-frames 1 to define the components of the user interface.

ui::draw-rpc rpc how

ui: :draw-cable cable how

ui : :draw-load load how

These are the primitive user interface drawing functions.

[Function]

[Function]

[Function]

They are used to keep the in-

terface up to date with the state of the breadboard. The how argument is the same in

all the functions, its value can be ont vf: :hollow, :filled, :invisible, :faulted, and

: out-of-service, rpc is a symbol for the name of an rpc, a03, or c05, for example, load is

a symbol for the name of a load, and cable is a symbol for the name of a symbol.

V

SSM/PMAD Technical Refe_etice :
III-18

r 1

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

propagate item

update-switch rpc command _key :tripped

update-cable cable

update-It-cables llp

update-load load

These functions are used to update the power system domain.

[Function]

[Function]

[Function]

[Function 1

[Function]

When a transaction comes

from an LLP to the Solbourne describing the switch configuration or switch status these

functions are used to both update the database to keep the domain up to date and to

update the user interface to reflect the new switch state and power flow status through the

cables.

item is the symbol for a switch or load but not a cable. The update-switch function takes

two required arguments and one optional keyword argument. The r-pc argument is a symbol

for a switch, command can be one of :open, :closed, and :faulted. If :faulted is used

it is a good idea to use the keyword argument to specify the type of trip, e.g. :fast-trip.

make-available-lip lip

make-unavailable-lip llp

make-available-switch rpc

make-unavailable-switch r'pc

make-available-sensor sensor

make-unavailable-sensor sensor

make-available-load load

make-unavailable- load

These functions are used to update the availability of the various components of

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

the bread-

board power system. They will both update the database of the domain as well as update

the user interface. Unavailable components on the user interface will not be accessible or

manipulable by the user.

status-vin [Variable]

diaffaosis-win [Variable]

prompt-window [Variable]

These variables are bound to windows for displaying data about the breadboard. The

prompt-window is used to display one fine messages to the user. The other two windows,

SSM/PMAD Technical Reference
III-19

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

=

status-win and *diagnosis-win* are used to display status messages and diagnoses.

These windows are only visible if the user decides to view them.

print-prompt-window message [Function]

This function is used to display messages in the *prompt-window*. message should be a

string, probably not more than about 40 characters, that will get printed in the window.

make-status-vin &key :lines-high :chars-wide :title

:background-color :foreground-color

:bottom :borders :font :title-font

[Function]

:frame-color :left

make-status-win is a function used to make a scrollable text window. This window may

be customized quite extensively by using the keyword arguments. Arguments such as

:background-color, if given, must be a legal common windows color.

:lines-high defaults to 20, :chars-wide to 80. The background color will default to

white while the foreground color and the frame color will default to black. There is no

default title (it defaults to nil). The position defaults to a left of 100 and bottom of 100.

The borders default to 2 pixels. The :font defaults to *systeta-font* (a common windows

variable), and the title font defaults to *title-font*.

The window, once created, can then be manipulated with the following functions to dis-

play it, to print strings in it, and to kill it. The window will be a scrollable window and allow

scrolling when there are more lines of text in it than fit in the window, make-status-win

returns a wid.

V

status-vin-vrite-line wid line [Function]

exposing-status-vin-vrite-line wid line [Function]

status-vin-vrite-lines wid &rest lines [Function]

These functions are used to write text strings to a window as created by make-status-win.

w/d should be the item returned by make-status-win.

status-vin-vrite-line takes a wid and a line. The line should be string of not more

than the character width of the window, exposing-status-vin-vrite-line functions iden-

tically to status-vin-vrite-line except that if the window is scrolled to the bottom, the

window will be automatically exposed so that the user can see the new message in the win-

dow. The status-vin-vrite-lines function is also analogous to status-vin-write-line

except that any number of lines instead of] ast one may be passed to it. The function will

then use status-win-write-line to process each line.

SSM/PIVIAD- Technical Reference
111-20

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II

MCR-89-516

July 1990

show-status-win wid

kill-status-win wid

status-win-entries wid

These functions are used to manipulate status windows.

[Function]

[Function]

[Function]

show-status-win will expose

a status window so that the user can see it. kill-status-win gets rid of the window

permanently, status-win-entries is used to get the strings that have been written to a

status window. This will return a list of strings.

make-comm-window type [Function]

make-comm-st atus-window [Function]

kill-comm-windows [Function]

These are used for displaying windows containing data about communications between the

SSM/PMAD interface and the rest of the breadboard, make-torero-window takes an argument

type which may be either : receiver or : transmitter and makes the appropriate window for

each. make-co,m-window will display the communications log of the SSM/PMAD interface
receiver or transmitter.

make-torero-status-window will make a window that displays the status of communica-

tions between the SSM/PMAD interface and the rest of the breadboard. This will show

whether there is a connection or no connection to each of the other computers in the bread-

board.

kill-coma-windows is a general cleanup function and will remove the different commu-

nication windows from the interface and reclaim their storage space.

screendump [Function]

windowdump [Function]

These two functions are used to perform a screendump and window dump of the interface

respectively. The screendump function will start a background process that dumps the entire

screen image of the solbourne to a file in the user's knomad-archive directory. The name of

this file will start with Screen and be appended with the date and time of the dump. The

Windowdump function will prompt the user for a particular window to dump and similarly

write a file to the user's knomad-archive directory that starts with Window and is appended

with the date and time of the dump.

SSM/PMAD Technical Reference
III-21

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

legend

summary-sub-menu-help

utilization-sub-menu-help

schedule-sub-menu-help

summary-menu-help

comm-sub-menu-help

utils-menu-help

knomad-menu-help

init-sub-menu-help

init-menu-help

about-lips

about-rpcs

about-loads

about-sensors

about-cables

about-cursor

about-main-menu

about-display-windows

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

These functions are all used to display various help data to the user in the form of a status

window (scrollable text window) for all but the legend function. The legend function

displays a window that looks very similar to a status window but is not one. These functions

are all accessible from the user interface and may be called programmatically.

3.4 Communications Functions

The communications functions of the SSM/PMAD interface come in two varieties. There

are a few functions available for the purpose of manipulating connections between the com-

puters of the breadboard and their states. The other variety of functions are for describing

transactions that are sent along these communication channels. The functions for dealing

with transactions are quite exteusive, some are for describing transactions in general, while

most are for the particular transactions unique to the SSM/PMAD breadboard.

rr
:: : :: :: :? _::S :

SSM/PMAD Technical Reference
III-22

x,..j

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990
r i i

Finally, there will be a third section on utility communication functions. All the functions

related to communications are in the coma package.

3.4.1 Managing Communication Connections

In version 1.0 of the SSM/PMAD interface the user is somewhat limited on the amount of

control available over a connection. To start with there are two important variables the user

may access.

debug-comas [Variable]

process-table [Variable]

debug-comas may be set to a non-nil value by the user before starting the communications

to enable debugging information to be kept. This debugging information is useful to the

system developer that can access the various structures underlying the communications. For

the general user, this will not be possible.

process-table is a table of information about the communications to each of the

other computers of the breadboard. That is, llp-a, llp-b, llp-c, llp-d, llp-e, llp-f,

llp-g, llp-h, and symbolics. The table includes the following information about each

computer:

port The port is used to setup the underlying TCP socket port on the UNIX system for

communicating with the specified computer.

hostname The hostname is the name of the computer in the UNIX system's host table that

will be used to find the internet address of the computer.

stream The stream is used to record the current stream being used by the communications

to communicate with this computer.

state The state is used to record what state this connection is in. The possible states are

connection or no-connection.

queue The queue is used to record untransmitted messages to this computer that are waiting
to be transmitted.

rcvr The rcvr is used to record the actual rcvr process of this communication channel that

is used to receiver transactions.

xmtr The xmtr is similar to the rcvr but is used to transmit messages to this computer.

waiter The waiter is used for all the LLPs but not for the symbolics. It is used to record

the process for accepting connections from an LLP. Perhaps listener would be a more

appropriate name.

SSM/PMAD Technical Reference
III-23

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II
MCR-89-516

July 1990

process

llp-a

llp-b

llp-c

llp-d

llp-e

llp-f

llp-g

llp-h

symbolics

port hostname

14000 pcl

14001 pc2

14002 pc3

14003 pc4

14004 pc5

14005 pc6

14006 pc7

14007 pc8
9009 maestro

Table 1: Processes Ports and Hostnames

socket The socket is used to record what socket the UNIX systems has specified for us to

use to communicate with this computer. We record this because once we are given a

socket by the UNIX system we use that same socket every time we need to listen or

accept a connection to one of the LLPs.

In version 1.0 of the system the port and hostname entries of the *process-table* are

initialized as in table 1.

process-port process

process-host process

process-stream process

process-state process

process-queue process

process-rcvr process

process-xmtr process

process-waiter process

process-socket process

These functions are used to access the entries on the *process-table*.

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

process is one of

the computers, e.g. lip-a, symbolics. AH of these functions except for process-port and

process-host are setf'able. However, it is recommende_' :hat the user does not do so unless

absolutely certain of the setf's effect, on the various communications processes.

Communications is a complex subject in its own right. Briefly, the Solbourne initiates a

connection to the Symbolics, while the LLPs are responsible for initiating and maintaining

V

L

VS_'MTPMAD Technical Reference
Ill-24

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

their connections to the Solbourne. Using TCP, to initiate a connection, one first gets a

socket from the UNIX system then attempts to connect to the desired computer (using

internet address and port number). This is done using the open-connection function for

the Symbolics (described later). To receive and accept connections the protocol is a bit

more complex. First a socket must be retrieved from the UNIX system, then a listen is set

up on that socket related to a particular port. These ports are then connected to by the

LLPs. When a connection is made by an LLP, the receiving software on the Solbourne may

perform an accept. If the accept is successful a complete two-way connection has been made.

The waiter function for the LLP is the primary mechanism for performing this sequence of

functions and is also responsible for initializing the LLP when it first connects.

These concepts are very confusing to the amateur network software developer and also

hard to explain to the general user. Since the functions available to the user for managing

communications at this level are very limited, further confusion will be avoided. Suffice it

to say that it works.

make-comm-processes [Function]

kill-torero-processes [Function]

make-torero-processes is used to start the communication processes and initiate a connection

to the symbolics. This function is used by the SSM/PMAD interface to start the commu-

nications, kill-torero-processes is called when stop-frames is called and shuts down all

the communications to the other computers in the breadboard.

open-connect ion host [Function]

close-connection host [Function]

These functions are used only while the normal communications processes are executing.

open-connection may be used to open a connection to a computer where that connec-

tion is normally initiated by the Solbourne. In this case host may only be symbolics.

close-comaection may be used to close any connection. Here host may be any of 11p-a,

llp-b, ..., symbolics.

init ialize-symbolics [Function]

This function is used to initialize the Symbolics for autonomous operation. When au-

tonomous mode is entered, this function is called. Therefore, if the user realizes that the

connection to the symbolics has somehow been broken or not initiated, tho user may first

open the connection and then call this function to get things going again without starting

over.

V
SSM/PMAD Technical Reference

III-25

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

3.4.2 Transactions

Passing messages in the SSM/PMAD breadboard through the SSM/PMAD interface is done

in the form of transactions. Transactions have a weU-defined semantics for the system and

are discussed here.

A transaction is a structure of four fields and defines the destination and source as well

as the type of the data being communicated.

(def struct transaction

dest inat ion

source

type

data)

The transaction, as well as all other types of data being communicated, is specified using a

field-descriptor for each field of data:

(def struct field-descriptor

name

length

format

repeat -next)

The field-descriptor is used to let the deblocking routines know how to take a transaction

apart. The basic transaction has four fields and is defined to the deblocking routine using

the following form:

(add-deblock 'transaction

(list (make-field-descriptor :name '*Destination"

:format 'symbol :length I)

(make-field-descriptor :name "Source" :format 'symbol :length I)

(make-field-descriptor :name "Message Type"

:format 'packed :length 1)

(make-field-descriptor :name "Message Data" :length 'rest)))

All transactions are passed in the form of an ascii string with a newline at the end (ascii

character 10). This string representation is a marshalled form of the data being passed.

Marshalling the data for communication in the SSM/PMAD interface is done by blocking

it and demarshalling is done by deblocking. Therefore, to sp--ify a new data type to be

passed between computers at least three items must be supplied: One, the structure of the

V

V

III-26

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-S16

Volume II July 1990

L

x_j-

data, two, the deblock specification of the data, and three, the blocking specification of the

data. s

The blocking specification takes the form of a function while the deblock specification is

provided using the add-deblock function and field descriptors. There are three other impor-

tant functions for each transaction that must also be provided by the transaction designer.

The transform-in function is used to transform the incoming data into an alternate form

that is more suitable to be used by the data processing functions. The transform function is

used to transform data being transmitted as output to a form that the receiving computer is

more interested in. For example, the LLPs transmit an RPC number as a two digit integer.

The SSM/PMAD interface manipulates RPCs as symbols consisting of the three characters,

the first is the identification letter of the LLP and the second two are the two digits that

the LLP uses. The transform-in function processes this transformation. Finally, a third

function, the process function is used to actually process the data.

The rest of this section will describe the various functions available to the designer of

data communications and then the transactions used by the SSM/PMAD interface.

add-deblock key descriptor [Function]

add-deblock defines the description descriptor to be associated with the name key. The

description should be a list of field descriptors.

describe-deblock deblock-definition &key stream [Function 1

describe-deblock takes a definition of a debIock, either the name of the deblock as specified

by add-deblock or the actual definition, and pretty prints it to stream. If stream is not

provided it defaults to *standard-output*.

field-descriptor name length format repeat-next [Structure]

The field-descriptor is used to define the format of each field of a data type. The name

is simply a description of the particular field and can be any data type. The length can be an

integer or the symbol rest to specify how long the field is in the data stream. Alternatively

length may also be the key of another deblock specification that means that this field is

really a complete nested structure specified by a deblock. The format is used to specify how

this field is formatted and how it should be read. The repeat-next slot defaults to nil. The

repeat-next slot is used to specify that the next field descriptor should be repeated a number

of times to produce a list of items. The exact number of times should be the result of the

field descriptor that has the 7,epeat-nezt specified as non-nil.

5However, one may consider if the data is only input or output. If it is only input, then only the blocking
speciticatio, does not need to be provided and vice versa. It is good practice to provide a_l the structure as
well as both blocking and deblock specifications.

SSM/PMAD Technical Reference
III-27

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

The best way to use the field descriptors are to examine the examples of the communi-

cations of the SSM/PMAD interface in the source listings.

The format of data specified in a field descriptor may currently be of the following forms:

normal [Deblock Format]

symbol [DebIock Format]

packed [Deblock Format]

packed79 [Deblock Format]

lip-integer [DebIock Format]

ntmeric [Deblock Format]

The normal format will simply read the number of characters of the string specified by the

length slot of the field descriptor, normal reads a string, symbol is like normal except that

the string read by normal will be interned into the rule-syste,, package and returned as

the symbol, packed specifies that the current character of the input string is in a packed

format and needs to be unpacked. The packed format allows integers in the range 0 to 79 to

be represented as one ascii character. The length slot for a packed format should always be

1. The packed79 format is like packed except that it will use two ascii characters to specify

a base 79 number. The length slot for packed79 should be 2. The numeric format reads the

straight ascii representation of an integer from the input string based upon the length slot.

The lip-integer format is like the numeric format except that the bytes are reversed.

The rest of this section on transactions describes the SSM/PMAD interface transactions.

transact ion-table [Variable]

transact ion-address [Variable]

The *transaction-table* is used to define the transactions of the SSM/PMAD interface.

Each entry consists of three items: The name of the transaction, its type, and its priority.

This table is used by the various functions defined next.

The *transaction-address* table is used to specify the destination and source of trans-

actions. These addresses are all single character codes for the various software components

on the computers of the breadboard.

ill

SSM/PMAD Technical Reference
Ili-28

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

transaction-id code

transaction-blocking-funct ion type

transaction-transform-function type

transaction-transform-in-function type

transaction-priority type

transaction-process-function type

transaction-address code

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

These functions are used to retrieve various aspects about transactions from either the name

of a transaction or its code (where type and code will be bound to these), transaction-id

will return the name of the transaction if the code id given and the code if the name is

given. The transaction-blocking-function, transaction-transform-function, tran-

sact ion-transform-in-function, and transact ion-process-funct ion functions return

the function associated with the transaction type specified (either by name or code), tran-

sact ion-priority-funct ion will return the priority of the transaction, transaction-ad-

dress will the long name of the address if given the one character representation and vice

ver sa.

The transaction table and addresses are pictured in tables 2 and 3 respectively. The
transaction definitions follow.

SYNC-TIME

(defstruct sync-t ime

now-month

now-day

now-year

now-hour

now-minute

now-second

som-month

sore-day

sore-year

sore-hour

som-minute

som-second)

(add-deblock 'sync-time

(list (make-field-descriptor :name "Now Month"

v / SSM/PMAD Technical Reference
III-29

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

Name] Code I Priority

Symbolics --* Solbourne

sync-time 1
event-list 2

priority-list 3

contingency-events 8

ready? 11

source-power-change 14

Solbourne --* Symbolics

switch-to- redundant 6

load-shed 7

out-of-service 9

utilization 10

ready! 12

initialized 13

contingency- start 15

contingency-end 16

Solbourne'"---_ LLP

lip-event-list 30

lip-priority-list 31

llp-time-list 32

lip-contingency-events 33
switch-control 34

switch-conversion-constants 35

sensor-conversion-constants 36

initialize 37

lip-query 38
"- LLP ---,Solbourne

switch-status 40

sensor-status 41

temp-sensor- stat us 42

switch-performance 43

sensor- performance 44

switch-conversion-values 45

sensor-conversion-values 46

q-status 49
. ,H. ,..,,.

high

normal

norlnal

high

normal

high

high

high

high

low

normal

normal

high

high

normal

normal

high

normal

normal

normal

normal

normal

high

normal

normal

normal

normal

normal

normal

normal

high

Table 2: *transaction-table*

SSM/PMAD Technical Reference
III-30

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II

MCR-89-516

July 1990

Computer Code

LLP-A A

LLP-B B

LLP-C C

LLP-D D

LLP-E E

LLP-F F

LLP-G G

LLP-H H

Symbolics S

FELES S

MAESTRO S

LPLMS S

FRAMES W

UNIX-Box W

Workstation W

Solbourne W

FRAMES P

FRAMES X

Table 3: *transaction-address*

SSM/PMAD Technical Reference
III-31

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

:format 'numeric :length 2)

(make-field-descriptor :name "How Day" :format 'numeric :length 2)

(make-field-descriptor :name "Now Year" :format 'numeric :length 2)

(make-field-descriptor :name "Now Hour" :format 'numeric :length 2)

(make-field-descriptor :name "Now Minute"

:format 'numeric :length 2)

(make-field-descriptor :name "How Second"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Month"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Day" :format 'numeric :length 2)

(make-field-descriptor :name "SUM Year" :format 'numeric :length 2)

(make-field-descriptor :name "SOM Hour" :format 'numeric :length 2)

(make-field-descriptor :name "SOM Minute"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Second"

:format 'numeric :length 2)))

EVENT-LIST

(defstruct event-list

effect ive-t ime

number-of-events

events)

(def struct event

t ime

component-id

type

max -power

permission-to-test

redundancy

swi tch-t o-redundant

max-current

min- current

min-power)

(add-deblock 'event

(list (make-field-descriptor :name "Time of Event"

:format 'numeric :length 6)

k_/

SSM/PMAD Technical Refer_r/ce _
III-32

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

(make-field-descriptor :name "Component" :format 'symbol :length 3)

(make-field-descriptor :name "Event" :format 'symbol :length 1)

(make-field-descriptor :name "Max Power"

:format 'numeric :length 5)

(make-field-descriptor :name "Permission to Test"

:format 'symbol :length 1)

(make-field-descriptor :name "Redundancy"

:format 'symbol :length 1)

(make-field-descriptor :name "Switch to Redundant"

:format 'symbol :length 1)

(make-field-descriptor :name "Max Current"

:format 'numeric :length 3)

(make-field-descriptor :name "Min Current"

:format 'numeric :length 3)

(make-field-descriptor :name "Min Power"

:format 'numeric :length 5)))

(add-deblock 'event-list

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Events"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Events" :length 'event)))

LOAD-PRIORITY-LIST

(def struct load-priority-list

elf ect ive-t ime

number-of-components

components)

(add-deblock 'priority-list

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Components"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Components"

:format 'symbol :length 3)))

SSM/PMAD Technical Reference
III-33

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

SWITCH-TO-REDUNDANT

(defstruct switch-to-redundant

number-of-entries

specs)

(defstruct redundant-switch

component-id

time)

(add-deblock 'switch-to-redundant

(list (make-field-descriptor :name "Number of Redundant Switches"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Redundant Switch"

:length 'redundant-switch)))

(add-deblock 'redundant-switch

(list (make-field-descriptor :name "Component"

:format 'symbol :length 3)

(make-field-descriptor :name "Time of Switch"

:format 'numeric :length 6)))

V

LOAD-SHED

(defstruct load-shed

number-of-entries

specs)

(defstruct shed-load

component-id

time)

(add-deblock 'load-shed

(list (make-field-descriptor :name "Number of Load Sheds"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Load Sheds"

:length 'shed-load)))

(add-deblock 'shed-load

SSM/PMAD Technical Reference
III-34

x_/

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(list (make-field-descriptor :name "Component"

:format 'symbol :length 3)

(make-field-descriptor :name "Time of Shed"

:format 'numeric :length 6)))

CONTINGENCY

(defstruct contingency

effective-time

number-of-entries

events)

(add-deblock 'contingency-events

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Events"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Events" :length 'event)))

OUT-OF-SERVICE

(defstruct out-of-service

number-of-entries

specs)

(defstruct service-outage

component-id

start

end)

(add-deblock 'out-of-service

(list (make-field-descriptor :name "Number of Out of Services"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Service Outages"

:length 'service-outage)))

(add-deblock 'service-outage

(list (make-field-descriptor :name "Component" :format 'symbol :length 3)

SSM/PMAD Technical Reference
Ill-35

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(make-field-descriptor :name "Begin Time of Outage"

:format 'numeric :length 6)

(make-field-descriptor :name "End Time of Outage"

:format 'numeric :length 6)))

V

UTILIZATION

(def struct utilization

bus-a-start

bus-a-end

number-of-bus-a-entries

bus-a-entries

bus-b- st art

bus-b-end

number-of-bus-b-entries

bus-b-entries)

(defstruct power-spec

component-id

power)

(add-deb!ock 'utilization

(list (make-field-descriptor :name "Bus A Begin Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Bus A End Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Power Utilizations"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Power Utilization"

:length 'power-utilization)

(make-field-descriptor :name "Bus B Begin Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Bus B End Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Power Utilizations"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Power Utilization"

:length 'power-utilization)))

III-36

V

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

"-,..j

(add-deblock 'power-utilization

(list (make-field-descriptor :name "Component" :format 'symbol :length 3)

(make-field-descriptor :name "Utilization"

:format 'numeric :length 5)))

READY?

(add-deblock 'ready?

(list (make-field-descriptor :name "Ready?" :format 'symbol :length I)))

READY!

(add-deblock 'ready!

(list (make-field-descriptor :name "Ready!" :format 'symbol :length i)))

INITIALIZED

(add-deblock 'initialized

(list (make-field-descriptor :name "Initialized"

:format 'symbol :length 1)))

SOURCE-POWER-CHANGE

(defstruct source-power-change

start

end

power)

(add-deblock 'source-power-change

(list (make-field-descriptor :name "Effective Start Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Effective End Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Source Power"

:format 'numeric :length 5)))

CONTINGENCY-START

(add-deblock 'contingency-start

(list (make-field-descriptor :name "Contingency Start Time"

:format 'numeric :length 6)))

SSM/PMAD Technical Reference
III-37

Appendix III

SSM/PMAD Technical Reference
: i

Interim

Final Report
Volume II

MCR-89-516

July 1990

CONTINGENCY-END

(add-deblock 'contingency-end

(list (make-field-descriptor :name "Contingency End Time"

:format 'numeric :length 6)))

LLP-EVENT-LIST

(defstruct llp-event-list

effective-time

number-of-events

events)

(defstruct lip-event

time

component-id

event

type

redundancy

swit ch-t o-redundant

max-current

rain-curr ent)

(add-deblock 'llp-event

(list (make-field-descriptor :name "Time of Event"

:format 'numeric :length 6)

(make-field-descriptor :name "Component" :format 'symbol :length 3)

(make-field-descriptor :name "Event" :format 'symbol :length 1)

(make-field-descriptor :name "Event Type"

:format 'symbol :length i)

(make-field-descriptor :name "Redundancy"

:format 'symbol :length i)

(make-field-descriptor :name "Switch to Redundant"

:format 'symbol :length I)

(make-field-descriptor :name "Max Current"

:format 'numeric :length 3)

(make-field-descriptor :name "Min Current"

:format 'numeric :length 3)))

(add-deblock 'llp-event-list

(list (make-field-descriptor :name "Effective Time"

SSM/PMAD Technical Reference
III-38

V

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Events"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Events" :length 'llp-event)))

LLP-PRIORITY-LIST

(defstruct llp-priority-list

effective-time

number-of-components

components)

(add-deblock 'llp-priority-list

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Components"

:format 'packed79 :length 2 :repeat-next t)

(make-field-descriptor :name "Components"

:format 'symbol :lengrth 3)))

LLP-TIIVIE-LIST

(defstruct llp-time-list

now-month

now-day

now-year

now-hour

now-minute

now-second

som-month

som-day

som-year

som-hour

som-minute

som-second)

(add-deblock 'llp-time-list

(list (make-field-descriptor :name "Now Month"

:format 'numeric :length 2)

(make-field-descriptor :name "Now Day" :format 'numeric :length 2)

SSM/PMAD Technical Reference
III-39

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

(make-field-descriptor :name "Now Year" :format 'numeric :length 2)

(make-field-descriptor :name "Now Hour" :format 'numeric :length 2)

(make-field-descriptor :name "Now Minute"

:format 'numeric :length 2)

(make-field-descriptor :name "Now Second"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Month"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Day" :format 'numeric :length 2)

(make-field-descriptor :name "SOM Year" :format 'numeric :length 2)

(make-field-descriptor :name "SOM Hour" :format 'numeric :length 2)

(make-field-descriptor :name "SOM Minute"

:format 'numeric :length 2)

(make-field-descriptor :name "SOM Second"

:format 'numeric :length 2)))

LLP- C O NTINGENCY-EVENTS

(defstruct llp-contingency-events

effective-time

number-of-events

events)

(add-deblock 'llp-contingency-events

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

(make-field-descriptor :name "Number of Events"

:format 'packedY9 :length 2 :repeat-next t)

(make-field'descriptor :name "Events" :length 'llp-event)))

SWITCH-CONTROL

(defstruct switch-control

effective-time

number-of-events

events)

(add-deblock 'switch-control

(list (make-field-descriptor :name "Effective Time"

:format 'numeric :length 6)

V

SSM/PMAD Technical Reference
III-40

k_2

Interim

Appendix III Final Report MCR-89-516

SSM/PMAD Technical Reference Volume II _ July 1990

(make-field-descriptor :name "Number of Events"

:format 'packed79 :lenEth 2 :repeat-next t)

(make-field-descriptor :name "Events" :length 'llp-event)))

SWITCH-CONVERSION-CONSTANTS

(defstruct switch-conversion-constants

number-of-constants

switch-constants)

(defstruct switch-constallt

component-id

slope

intercept)

(add-deblock 'switch-conversion-constants

(list (make-field-descriptor _name "Number of Constants"

:format 'lip-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Switch Constants"

:length 'switch-constant)))

SENSOR-CONVERSION-CONSTANTS

(defstruct sensor-conversion-constants

number-of-constants

sensor-constants)

(defstruct sensor-constant

component-id

i-slope

i-intercept

v-slope

v-intercept

p-slope

p-intercept

t-slope

t-intercept)

(add-deblock 'sensor-constant

SSM/PMAD Technical Reference
III-41

Appendix III

SSM/PMAD Technical Reference

Interim

Final Repo_..
Volume II

MCR-89-516

July 1990

(list (make-field-descriptor :name "Component"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Current Slope"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Current Intercept" :

format 'llp-integer :length 4)

(make-field-descriptor :name "Voltage Slope"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Voltage Intercept"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Power Slope"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Power Intercept"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Temperature Slope"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Temperature Intercept"

:format 'llp-integer :length 4)))

LLP-QUERY

(defstruct llp-query

type

llp)

(add-deblock 'llp-query

(list (make-field-descriptor :name "query Type"

:format 'symbol :length 1)))

S%VITCH-STATUS

(defstruct switch-status

switch-num

anomalous

llp-flags

number-swit ch-records

switch-records)

(defstruct switch-record

component-id

v

SSM/P_I_-Technical Reference-:
III-42

V

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

status

hold-type

status-word

current

trip-tag)

(add-deblock 'switch-status

(list (make-field-descriptor :name "Switch Number"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Anomalous" :format 'symbol :length 1)

(make-field-descriptor :name "LLP Flags"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Number of Switch Records"

:format 'lip-integer :length 4

:repeat-next t)

(make-field-descriptor :name ,'Switch Records"

:length 'switch-record)))

(add-deblock 'switch-record

(list (make-field-descriptor :name "Component"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Position" :format 'symbol :length i)

(make-field-descriptor :name "Hold Type" :format 'symbol :length I)

(make-field-descriptor :name "Status Word"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Current"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Trip Tag"

:format 'lip-integer :length 4)))

SENSOR-STATUS

(defstruct sensor-status

number-of-sensor-records

sensor-records)

(defstruct sensor-record

component-id

current

voltage

SSM/PMAD Technical Reference
III-43

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

power

state)

(add-deblock 'sensor-status

(list (make-field-descriptor :name "Number of Sensor Records"

:format _llp-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Sensor Records"

:length 'sensor-record)))

(add-deblock 'sensor-record

(list (make-field-descriptor :name "Component"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Current"

:format _llp-integer :length 4)

(make-field-descriptor :name "Voltage"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Power"

:format 111p-integer :length 4)

(make-field-descriptor :name "State"

:format 'llp-integer :length 4)))

TEMP-SENSOR-STATUS

(defstruct temp-sensor-status

number-of-records

temp-sensor-records)

(defstruct temp-sensor-record

component-id

temperature)

(add-deblock 'temp-sensor-status

(list (make-field-descriptor :name "Number of Records"

:format 'llp-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Temperature Sensor Records"

:length 'temp-sensor-record)))

(add-deblock _temp-sensor-record

(list (make-field-descriptor :name "Component"

SSM/PMAD Technical Reference
III-44

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

:format 'lip-integer :length 4)

(make-field-descriptor :name "Temperature"

:format 'llp-integer :length 4)))

SWITCH-PERFORMANCE

(defstruct switch-performance

number-of-switches

switch-amp-records)

(defstruct switch-amp-record

component-id

start-time

end-time

avg-current

max-current

min-current

max-time

min-time)

(add-debloak 'switch-performance

(list (make-field-descriptor :name "Number of Switches"

:format 'lip-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Switch Amperage Records"

:length 'switch-amp-record)))

(add-deblock 'switch-amp-record

(list (make-field-descriptor :name "Component"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Start Time"

:format '11p-integer :length 4)

(make-field-descriptor :name "End Time"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Average Current"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Maximum Current"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Minimum Current"

:format 'lip-integer :length 4)

SSM/PMAD Technical Reference
III-45

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(make-field-descriptor :name "Maximum Time"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Minimum Time"

:format 'llp-integer :length 4)))

SENSOR-PERFORMANCE

(defstruct sensor-performance

start-time

end-time

number-of-records

sensor-amp-records)

(defstruct sensor-amp-record

avg-voltage

max-voltage

min-voltage

avg-current

max-current

min-current

avE-power

max-power

min-power

energy-consumed)

(add-deblock 'sensor-performance

(list (make-field-descriptor :name "Start Time"

:format 'lip-integer :length 4)

(make-field-descriptor :name "End Time"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Number of Records"

:format 'lip-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Sensor Amperage Records"

:length 'sensor-amp-record)))

(add-deblock 'sensor-amp-record

(list (make-field-descriptor :name "Average Voltage"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Maximum Voltage"

SSM/PMAD Technical Reference
III-46

V

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

:format 'llp-integer :length 4)

(make-field-descriptor :name "Minimum Voltage"

:format 'llp-integer :length 4)

(make-field-descriptor :name "Average Current"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Maximum Current"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Minimum Current"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Average Power"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Maximum Power"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Minimum Power"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Energy Consumed"

:format 'llp-integer :length 4)))

SWITCH-CONVERSION-VALUES

(defstruct switch-conversion-values

number-of-constants

switch-constants)

(add-deblock 'switch-conversion-values

(list (make-field-descriptor :name "Number of Constants"

:format 'lip-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Switch Constants"

:length 'switch-constant)))

(add-deblock 'switch-constant

(list (make-field-descriptor :name "Component"

:length 4 :format 'lip-integer)

(make-field-descriptor :name "Slope"

:format '11p-integer :length 4)

(make-field-descriptor :name "Intercept"

:format 'lip-integer :length 4)))

SENSOR-C ONVERSION-VALUES

SSM/PMAD Technical Reference
III-47

Appendix IH
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II
MCR-89-516

July 1990

(defstruct sensor-conversion-values

number-of-constants

sensor-constants)

(add-deblock 'sensor-conversion-values

(list (make-field-descriptor :name "Number of Constants"

:format 'llp-integer :length 4

:repeat-next t)

(make-field-descriptor :name "Sensor Constants"

:length 'sensor-constant)))

SW'ITCH-SENSOR-CONFIG

(defstruct switch-sensor-config

sensors?

number-of-switches

switch-configs)

(defstruct swit ch-config

component-id

type

state)

(add-deblock 'switch-sensor-config

(list (make-field-descriptor :name "Sensors Available?"

:format 'symbol :length 1)

(make-field-descriptor :name "Number of Switches"

:format '11p-integer :length 4

:repeat-next t)

(make-field-descriptor:name "Switch Configurations"

:length 'switch-config)))

(add-deblock 'switch-config

(list (make-field-descriptor :name "Component"

:format 'lip-integer :length 4)

(make-field-descriptor :name "Switch Type"

:format 'symbol :length 1)

(make-field-descriptor :name "Switch State"

:format 'symbol :length 1)))

SSM/PMAD Technical Reference
III-48

Appendix qI

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

Q-STATUS

(defstruct q-status

status)

(add-deblock 'q-status

(list (make-field-descriptor :name "Status" :format 'symbol :length 1)))

3.4.3 Utility Communication Functions

There are a number of supporting functions defined to support using the communications

and sending transactions. There are also some functions for working with transactions and

their data that has been received. These are defined here.

switch-shed? status-word

switched-to-redundant? status-word

tripped? status-word

get-trip-type status-word

bit-info status-word

[114acro]

[Macro]

[Macro]

[Macro]

[Function]

These are used to get information out of the bit-defined four-byte integer that is sent

from the LLP to the So|bourne with each switch record in the switch-status transaction.

switch-shed?, switched-to-redundant?, and tripped? aU return a t or nil value.

get-trip-type returnsa triptype (ornil), which can be one of: fast-trip, over-current,

under-voltage, and ground-fault, bit-info returns a listof allthe bitsthat are set in

the status-word, if any.

switch-switch-to-redundant switch [Function]

This function is used to update the database of the domain to specify that the given switch
has been switched to redundant.

gather-data-and-start-diagnosis [Function]

get-snapshot [Function]

These functions are used when a fault has been detected in the power system, get-snapshot

performs a complex function of communication with the LLPs to find out what trips the

switches may have. get-snapshot returns a symptom-set, get-snapshot is used by the fault

diagnosis expert system when isolating the fault, gather-data-and-start-diagnosis is

called when a fault is first detected by an LLP. It calls get-snapshot to find out the current

V SSM/PMAD Technical Reference
III-49

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

symptoms and asserts the symptoms to the database so that the expert system may perform

a fault diagnosis.

send-load-sheds components &optional time

send-redundants components &optional time

send-out-of-service-svitches switches &optional time

send-q-st atus-msg llp

send-next-dat a-msg lip

send-nert-sensor-msg llp

send-contingency-start &optional time

send-contingency-end &optional time

send-switch-control-events events &optional time &key

cont inuous-info-on switch-number

cont inuous-info-off switch-number

:queue

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

These functions are used to send various messages either to the LLPs or to the Symbol-

ics. send-load-sheds, send-redundants, and send-out-of-service-switches are used

to communicate to FELES and MAESTRO the new states of these particular switches. In

these three functions components, and switches are all switch names (symbols such as a03).

In all these functions where time is an optional parameter, it specifies when the particular

event happened, such as a switch being taken out of service. If time is not specified it de-

faults to the value of the global variable *last-update-time* which is always updated in
autonomous mode.

send-q-status-msg is used to tell the LLPs that they should respond as soon as they

are in a quiescent state. This function is used by the get-snapshot routine.

send-next-data-msg and send-next-sensor-msg are used to ask the LLP given to send

a switch-status or sensor-status message respectively.

send-cont ingency-start and send-contingency-end are used to let FELES and MAE-

STRO know that a contingency is being processed.
se_d-s_itch-¢ontrol-events is used to command switches on and off. Each event of

events should be a proper lip-event as specified in the transactions.

continuous= Switch- info'on and cont inuous-swit ch- info-off are functionsfor com-

ma,_Hing the LLP to send data about a switch every pass through its loop. These are primar-

ily for the user interface so that the user may observe what is happening to a switch. These

functions must be used with some care as version 1.0 of the system is not optimized. Having

g

M.J
SSM/PMAD Technical Referer:ce

III-50

Interim

Appendix III Final Report MCR-89-516

SSM/PMAD Technical Reference Volume II July 1990

an LLP continuously send switch data every pass through its loop may have a tendency to

degrade the performance of the software on the Solbourne.

3.5 Utility Functions

The SSM/PMAD interface provides a number of utility functions for general support of the

rest of the system. These functions are for clock support, events, and queues.

clock [Variable]

unit s-per-second [Variable]

The clock in the SSM/PMAD interface is bound to the global variable *clock*. The Sol-

bourne system clock is not used because to change the time one would have to be root, which

is not good practice for general software development and applications.

The *units-per-second* variable is provided for the purpose of adjusting the speed of

the clock either faster or slower. *units-per-second* defaults to 1. If this is changed to 2

then the clock will run twice as fast as the wall clock. It is recommended that this variable

not be changed. The rest of the SSM/PMAD interface does not use clock-sleep as often

as it should to properly schedule system functions.

make-clock

start-clock cl

kill-clock cl

get-time cl

set-time cl time

clock-sleep seconds

These functions are used for manipulating the clock.

[Function]

[Method]

[Method]

[Method]

[Method]

[Function]

make-clock makes the clock and

returns it. start-clock and kill-clock are methods and must be passed the clock as

an argument, make-clock does not start the clock, start-clock must be used to do this.

get-time and set-time are used to get the time of the clock and set the time respectively.

For setting the time, time should be in universal time format. Finally, clock-sleep is used

as an alternative to the LISP sleep function to take into account the speed of the clock.

create-event aoptional name

await-event event &optional timeout

notify-event event

An event is used by a process to walt for something.

[Function]

[Function]

[Function]

Generally, an event can be thought

SSM/PMAD Technical Reference
III-5i

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

of as a situation. To wait for an event a process calls araait-event. To wake up from an:

event some other process must call notify-event on the event that the sleeping process is

waiting for. Of course the event must be first created with create-event.

When a process waits for an event, await-event will add a reason to the process-arrest-

reasons of the process. This effectively takes the process off of the scheduling queue and

puts it to sleep. It is woken up when notify-event called with the same event removes the

reason from the process-arrest-reasons.

awail;-event may also take an optional timeout argument. This argument is the number

of SECONDS that the process is willing to wait for a notification. If the notification does

not come in that time, it will be woken up regardless. If the timeout is not given, the process

may potentially wait forever.

An event may be notified before a process is awaiting it. If this happens the signal is

stored in the event. The first process that awaits the event will then be immediately woken

up. Multiple notifications to an event do NOT stack. They will be treated as one notification.

If there is more than one process waiting for an event, they will all be woken up if the

event is signaled. This is probably the way one would do events in OS programs as well. If

it turns out that all the processes are waiting on the same resource and only one can have

it then you have a case where you would want to use Dijkstra's locking algorithm. There is

a difference here between events and locks that I am trying to distinguish. Events are used

to signal things in general. Locks are used to obtain exclusive access rights over something.

Events may cause locking operations, while locking mechanisms may use events internally
in some manner.

This manner of event handling is VERY similar to the Xerox notion of events.

Some more thoughts as a result of scanning "An Introduction to Operating Systems" by

Harvey M. Deitel (Addison-Wesley, 1984).

Events are generally used for synchronization. This implementation generalizes the basic

event mechanism in two ways; one, so multiple processes can wait on the same event, and

two, a waiting process can have a timeout -- (is this similar to some of Ada's mechanisms

for process synchronization?). Another generalization of the event mechanism is to allow a

process to wait on a boolean combination of events. To do this one would want to define

events as bits in a word. As events are signaled, blocked processes (waiting on events) are

anded (logically) with the signaled event to see if they are woken up...

SSM/PMAD Technical Reference
III-52

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

create-queue &optional

init-queue queue

init-queues

add-entry queue item

remove-entry queue

get-queue-entries queue

name [Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The queue functions provide general support for the queue data structure. In this implemen-

tation a queue operation is always done in constant time by utilizing the pointer capabilities

of LISP.

create-queue is used to make a new queue, init-queue will initialize a queue. This

is good to do if the state of the queue is unknown, init-queues will initialize every queue

that has been defined, add-entry and remove-entry will add and remove entries from a

queue, get-queue-en'eries returns a list of all the entries on a queue, allowing the user to

perform other functions on queue items if desired.

x__.j

SSM/PMAD Technical Reference
III-53

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

4 FRAMES Technical Reference

The FRAMES system is a large, complex set of programs for fault diagnosis, isolation, and

recovery in the world of a space station module-like power system. It consists of a number

of traditional expert systems, a number of conventional algorithmic control processes, as

well as a large amount of advanced programming techniques. The programs making up

FRAMES reside on everything from PC clones to UNIX boxes to specialized LISP machines.

The FRAMES system is an advanced research and development platform for the purpose of

designing a robust fault detection, isolation, and recovery mechanism that could be applicable

to Space Station Freedom.

This section of the report briefly overviews the architecture of FRAMES, describes the

modular rule organization of the multiple faults expert system part of FRAMES, and then

provides excruciating detail on the FRAMES knowledge base.

V

4.1 The FRAMES Architecture

The FRAMES system is partitioned into three major divisions based upon the response

time needed at the different partitions. The three partitions are the distributed lower level

processors for controlling the hardware, the fault isolation and diagnosis expert systems, and

the scheduling system.

The switch hardware is controlled by the lower level processes which reside on PC clones.

The algorithmic processes at this level control the operation of turning switches on and off

as well as monitoring power levels and performing limit checking. The lower level processes

detect fault conditions which include a switch physically tripping off due to an over current

or under voltage situation in the hardware. These fault symptoms are communicated to

the fault isolation and diagnosis expert systems. Additionally, scheduled operations may no

longer be performed on the tripped switches.

The response time of the lower level processors is necessarily fast. Typically, limit check-

ing operations to shut a load off if it is using to much power, for example, are done in within

a one second period. The speed of the lower level processes also has implications on later

fault isolation. It is quite possible that if an I2t short is occurring in the hardware at a level

of approximately 120% of the switch's rating, that it could take the switch up to five seconds

to trip. The lower level processor will shut the switch off much sooner than this.

The third partition, the scheduling system, is not required to be nearly as responsive.

Its role is to create a schedule for operating the switches in advance and to maintain that

schedule during contingencies in the power system. In the present system, schedules are

shipped to the J,'_er level processors in thirty minute blocks. This allows for a semi-graceful

degradation of the overall system performance if the scheduler becomes inoperable for some

reason. When a fault has been diagnosed in the power system and a set of switches has been

determined unusable, the scheduler is expected to reschedule its activities in a reasonable

,..2SSM/PMAD Technical Reference
III-54

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report MCR-89-516

Volume II July 1990

amount of time. The scheduler has been partitioned at the highest level and is expected to

perform in a period of minutes.

The second partition is the fault isolation and diagnosis part of FRAMES. This part

consists of a number of traditional expert systems for diagnosing different types of problems

in the power hardware as well as maintaining other knowledge intensive states such as the

load priority list. Currently three expert systems are defined to exist at this level: the Load

Priority List Management System (LPLMS), the fault diagnosis expert system, and the soft

fault expert system.

The fault isolation and diagnosis expert system requires many supporting functions in

addition to the rules that make it up. Embedding knowledge intensive applications into real

world complex systems require many parts for a successful system (see [Rieb] for one way

to deal with this). In the FRAMES system these additional functions include detecting and

monitoring the hardware (done by the lower level processors); communication algorithms

for communicating with the distributed processors; algorithmic processes for logging data,

updating database values, and the like; and user interface functions to make the system
useful.

A result of this modular organization of functions in both inter and intraprocessors is

that the expert systems for fault isolation and diagnosis do not need to be executing for

a person to use the system. Another way to look at it is that operating the system in an

autonomous fashion requires the reasoning processes as embedded in the expert systems,

while operating it manually does not.

4.2 Multiple Faults in SSM/PMAD

The problem of multiple faults in SSM/PMAD can be divided into two cases:

Case 1 Faults that occur within A time of one another.

Case 2 Faults that occur at least A time from one another.

Where A is defined as: The amount of time it takes for a fault to be initially detected and

subsequently diagnosed. Faults that occur at least A time from one another were already

handled in the first generation of FRAMES. Faults that occur within A time of one another

are the focus of this report.

Suppose first that multiple faults have occurred in the power system during the detection

of the faults. By the time the power system has reached a quiescent state, the lower level

processors will report a set of symptoms indicative of more than one fault. The fault isola-

tion software is then tasked with determining how these collected symptoms,might indicate

multiple faults.

There are three cases that may be identified. The multiple faults may occur on the same

bus, they may occur in the same hierarchy, and they may occur on completely independent

SSM/PMAD Technical Reference
III-55

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516
Volume II July 1990

busesl For multiple faults that occur in the same hierarchy it is possible that one of the

faults could be masked (by a bad current sensor, for example) and appear to be multiple
faults on the same bus.

To adequately deal with multiple faults the set of symptoms that the LLPs report are

first analyzed and organized into clusters. A cluster of symptoms is a set such that each

symptom in the set either occurred on the same bus or occurred below another symptom.

This leaves two cases of multiple faults for the expert system to deal with. Each cluster may

be dealt with independently.

Given a cluster of symptoms, the first thing that is checked is if all the top symptoms

(those symptoms of the set that are all at the highest level - all on the same bus therefore)

are under voltage. If this is the case it is possible that there may be no power to the bus.

To check this, the top sensor of the bus as well as various sensors above the tripped switches

are looked at to see if they have nominal voltage or less than nominal voltage.

If all the top symptoms are either fast trip or over current and they all have loads hooked

up that are related to the same activity, it is possible that the particular activity may be

involved in the trips. If all the top symptoms are fast trip, not related by an activity and do

not have any switches below them, then it is possible that one of the switches had a short

below it and the other switches may have fast tripped due to energy storage (but unlikely).

Finally, if none of the above cases apply, each of the top symptoms is diagnosed as an

independent fault indication. Each top symptom will be either fast trip or over current (the

under voltages were diagnosed earlier). The particular top switch and the switches below

it may then be tested and diagnosed as an independent fault. Now, if the fault is found

somewhere below the top switch (due to a masked fault), there may have been other faults

in that hierarchy. If there were, the highest (in the topology of switches) of these other

faults, below the top symptom yet across from the switch finally diagnosed as the position

of the fault, may also be diagnosed as independent faults.

An added complication is that the isolation and diagnosis phase is part of the A time.

This includes commanding switches on and off in an effort to repeat the symptoms. If

another fault occurs during this testing, the data collection algorithms must be smart enough

to incorporate any new symptoms correctly into the existing symptoms.

See [Riea] for more details about multiple faults in the SSM/PMAD breadboard.

4.3 The FRAMES Knowledge Base

The FRAMES knowledge base is defined using the KNOMAD'SSM/PMAD system (described

in section 5). The knowledge base is first listed here.

@@

@@The FRAMES knowledge base
Q_

@@This knowledge base is for defining %he rules and data necessary

SSM/PMAD Technical Reference
III-56

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

"--V" @Q for implementing the expert systen for power diagnosis.

@@ It is currently set up as three rule groups.

@@ The control rule group controls invocation of the other two.

@@ It vatches for symptoms from the poger system and calls the

@@ hard fault rule group to perform dia_oeis on any s_ptoms.

@@ When a diagnosis is determined, the di_osis rule group is

@@ called for printing the diagnosis out and setting up any necessary out of

@@ service information.

@@

KB : MF-frame8

@@

@@

@@

@@

We star_ by initializing the domain.

information to define the model.

This includes LOTS of

@DOMAIN : /usr/local/knomad/domains/fraues.domain

@@ Load the rule groups

FILE : /usr/local/knonad/knouledge-bases/mf-control.rg

FILE : /usr/local/knomad/knouledge-bases/multiple-fault.rg

FILE : /usr/local/knomad/knoeledge-basss/mf-diagnosis.rg

FILE : /usr/local/knonad/knovlsdge-bases/soft-fault.rg

Domain-Knowledge :
constants :

t ; true ; false ; nil ;

started ; done ;

multiple-hard-fault ; mr-diagnosis ;

on ; off ; yes ; no ; y ; n ;

over-current ; under-voltage ; fast-trip ;

@@ Diagnosis slots

:name ; :top-sTn p ; :slotl ; :slot2 ;

@@ soft-fault constants

:analyzed ; :unanalyzed ;

@@

@@ the diagnosis constants

@@

no-power-to-bus ;

broken-cable-betwesn-sensor-above-and-u-v-suitchss ;

broke-output-cable-of-seitch-above ;

broke-input-cable-of-seitch-above ;

break-in-cable-above-switch-above-and-bad-u-v-sensor-switch-abovs ;

no-permission-_o-test-possible-backrush ;

unexpected-to-nany-retrips-possibls-back.rush ;

no-retrips-on-flips-possible-backrush ;

SSM/PMAD Technical Reference
IH-57

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

found-pos s ible-backrush ;

unexpect ed-retrip-pos sible-backrush ;

unexpect ed-syupt ores-during-open ;

unexpected-t oo-nany-symptoms-f lip-top ;

retrip-on-flip ;

unexpect ed-retrip-during-f lip ;

not-found-no-levels ;

unexpect ed-trips-dur_-clos e-t op ;

not-f ound-cant -teet -further ;

unexpec_ed-t o-nany-tops-aft er-flipe ;

unexpect ed-diff erent-top-aft er-flips ;

not -f ound-o.11-t est ed ;

possible-found ;

unexpect ed-dif f erent-trip-during-cloees ;

unexpect ed-new-trips-during-close s .
facts :

empty = () ;

sf-nodes = (a-nodel a-node2 a-nodeS a-node4 a-node5 a-node6 a-node7

a-node8 h-nodel h-node2 h-nodeS h-node4 h-node5 h-node6

h-node7 h-node8 b-node1 b-node2 c-nodel c-node2 d-nodel

d-node2 e-node1 e-node2 f-nodel f-node2 g-node1 g-node2) ;
s_-result = ()

@@

@@ Let's start the control rule group
@@

begin : nf-control

end-kb

In a typical stand-alone environment the knowledge base for a knowledge agent is loaded.

This involves defining the domain and defining the rules of the knowledge agent. When

applying a knowledge agent to an embedded system, such as SSM/PMAD, how the various

pieces of the knowledge agent get loaded may be changed. In the FRAMES knowledge agent

we load the domain explicitly from another location. When we need to run the SSM/PMAD

breadboard in autonomous mode the rest of the knowledge agent gets loaded, that is the

knowledge base definition given above.

The organization of a knowledge agent consists of a number of parts. Generally the first

part will define the domain. In the above listing, that part is commented out. Then the

rule groups are defined. These can be made a part of the same file as the knowledge agent

or can be split into different files for easier maintenance. Some initial domain knowledge,

in the form of constants, fac ,_, and frames is then defined. Finally, those rule groups that

should start executing are specified.

The next three subsections list the FRAMES domain and the expert systems making up

the FRAMES knowledge agent.

SSM/PMAD Technical Reference
III-58

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

4.3.1 The FRAMES Domain

The FRAMES domain is currently specified in the form of a LISP file. This involves defining

the frames making up the domain and the actual objects of the domain.

; ; ; ; The Domain Objects

(frame :name power-domain

:slots ((top-symptou :value #'top-symptoms)

(cluster-symptoms :value #' cluster-symptoms)

(flip-switches :value #'flip-switches)

(close-switches :value #' close-switches)

(open-switches :value #'open-switches)

(open-relevant-switches :value #'open-relevant-switches)

(flip-switch :value #'flip-switch)

(close-switch :value #'close-switch)

(reclose-switches :value #'reclose-switches)

(new-diagnosable-switches :value #'new-diaEnosable-switches)

(out-of-service :value #'out-of-service)

(send-out-of-services :value #' send-out-of-services)

(end-contingency :value #'end-contingency)

(make-diaEnosis :value #'_ake-dia_osisl)

(sun-values :value #'sun-values)

(loose-< :value #'loose-<)

(loose-> :value #'loose->)

(loose-= :value #'loose-=)

(loose->= :value #'loose->=)

(kludge-switch :value #'kludge-switch)

(kludge-fault : value # ' kludge-f ault)

(write :value #'domain-grite)

(diagnosis-window :value t)))

(frame :name diagnosis

:slots ((name :value nil)

(top-s_ :value nil)

(slot1 :value nil)

(slot2 :value nil)))

(frame :name node

:Slots ((upper-switch :value nil)

(lower-switches :value nil)

(upper-sensor :value nil)

(lower-sensors :value nil)

(upper-node :value nil)

(lower-nodes :value nil)

(analyzed :value :unanalyzed)))

(frame :name symptom-set

SSM/PMAD Technical Reference
III-59

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

:slots ((slmptone)))

(frame :name symptom

:slots ((switch)

(fault)))

(frame :name event

:slots ((co--and)

(conponent-id)

(aax-pover)

(redundancy)

(switch-to-redundant)

(mu-currsn¢)

(nin-current)

(nin-ponr)
(pez_aission-to-test)

(t_e)))

(frame :name source

:slots ((name)

(voltage)

(current)

(available :value t)

(cable-out :value nil)))

(frame :name load

:slots ((name)
(cable-in :value nil)

(left-bottom)

(active-region)

(povered :value nil)

(lip)
(voltage)

(current)

(restartabls :value nil)))

(frame :name llp

:slots ((name)

(windou)

(left-bottom)

(width-height)

(available :value t)

(sic-a :value :available)

(sic-b :value :available)

(contained-s.itches-bus-a)

(contained-seitches-bus-b)

(contained-sensors)))

$SM_MXD _Technicai_Refe_nc_
III-60

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

(frame :name sensor

:slots ((name)

(current)

(voltage)

(power)

(t empera_ure)

(available :value _)

(i-slope)

(i-intercept)

(v-slope)

(v- int erc ept)

(t-slope)

(t-intercept)

(performance-data-stack :value nil)

(latest-performance-current-avg :value O)

(act ire-region)

(upper-node)

(lower-node)))

(frame :name switch

:slots ((name)

(type)
(left-bottom)

(active-region)

(state :value :open)

(available :value t)

(tripped :value nil)

(powered :value nil)

(current)

(voltage)

(switches-below :value nil)

(switch-above :value nil)

(siblings)

(event)

(mr-indication :value :false:) ::

(status-word) ;from llp

(current) ;from llp

(trip-ta_ :value nil) ;from llp

(slope)

(intercept)

(corresponding-sensors :value nil)

(sensor-above :value nil)

(top-sensor)

(current-trippable)

(current-rating)

(fast-trip-percent)

(over-current-percent)

(under-voltage-trippable)

SSM/PMAD Technical Reference
III-61

Appendix III
FgM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

(under-voltage-value)

(llp)

(redundant-switch :value nil)

(po.er-rat ing)

(cable-in :value nil)

(cable-out :value nil)

(perfonmnce-data-stack :value nil)

(latest-performance-current-avg :value O)

(upper-node)

(lower-node)))

(frame :hale cable

:slots ((name)

(polygons)

(poeered :value nil)

(in)
(out)))

(defvar *voltage* 120) ; DC voltage

(fcreate-instance 'symptom-set 'symptom-setl)

(fcreate-instance 'sympton 'top-symptom)

;;;; The Donain Definition

;;; create the suitches first

;;;aO1

(dolist (switch '(a01))

(fcreate-instance 'switch switch)

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert) '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

switch

switch

switch

switch

switch

switch

switch

switch

,switch

,switch

type :value rbi))

name :value ,switch))

current-trippable :value false))

under-voltage-trippable :value false))

current-rating ,(/ 15000 *voltage*)))

fast-trip-percent :value 1.75))

over-current-percent :value 1.20))

llp :value llp-a))

power-rating :value 15000))

upper-node :value a-nodel))

,suitch lower-node :value a-node2))

,switch cable-in :value lip-a-cable-O))

,switch cable-out :value lip-a-cable-I)))

;;;a02 a03 a04 sO5 on6 a07

(dolist (switch '(sO2 a03 sO4 sOS sO6 sO7))

(fcreate-instance 'switch switch)

(assert! '(frame ,s.itch type :value 3k-rpc))

SSM/PMAD Technical Reference =:
III-62

MM

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert !

(assert !

(assert!

(asse:r e !

(asser_ !

(asser_ !

(asser_ !

(assert !

(frame ,switch name :value ,switch))

(frame ,switch turrent-trippable :value true))

(frame ,switch turrent-ratin g :value ,(/ 3000 *voltage*)))

(frame ,switch fast-trip-percent :value 1.75))

(frame ,switch over-current-percent :value 1.20))

(frame ,switch under-voltage-trippable :value true))

(frame ,switch under-voltage-value :value 60))

(frame ,switch llp :value llp-a))

(assert ! '(frame ,switch power-rating :value 3000))

(assert ! '(frame ,switch upper-node :value a-node2))

(assert ! '(frame ,switch cable-in :value llp-a-eable-l)))

(assert! '(frame a02 lower-node :value a-nodeS))

(assert! '(frame aO3 lower-node :value a-node4))

(assert! '(frame a04 lower-node :value a-nodeS))

(assert! '(frame aOS lover-node :value a-node6))

(assert! '(frame a06 lower-node :value a-node7))

(assert! '(frame aOT lover-node :value a-nodeS))

(assert! '(frame a02 cable-out :value llp-a-cable-2))

(assert! '(frame aO3 cable-out :value llp-a-¢able-3))

(assert! '(frame nO4 cable-out :value lip-a-cable-4))

(assert! '(frame a05 cable-out :value llp-a-cable-5))

(assert! '(frame a06 cable-out :value lip-a-cable-6))

(assert! '(frame nO7 cable-out :value 11p-a-cable-7))

;;;hOl

(dolist (switch '(hOl))

(fereate-instance 'switch switch)

(assert! '(frame ,switch type :value rbi))

(assert! '(frame ,switch name :value ,switch))

(assert! '(frame ,switch current-trippable :value false))

(assert! '(frame ,switch under-voltaEe-trippable :value false))

(assert! '(frame ,switch current-ratin E :value ,(/ 15000 *voltage*)))

(assert! (frame ,switch fast-trip-percent :value 1.75))

(assert! (frame ,switch over-current-percent :value 1.20))

(assert! (frame ,switch 11p :value llp-h))

(assert! (frame ,switch pover-ratin E :value leO00))

(assert! (frame ,switch upper-node :value h-node1))

(assert! (frame ,switch lower-node :value h-node2))

(assert! '(frame ,switch cable-in :value llp-h-cable-O))

(assert! '(frame ,switch cable-out :value llp-h-cable-1)))

;;;h02 h03 h04 hOS h06 hOT

(dolist (switch '(h02 hO3 h04 hOe h06 hOT))

(fcreate-instance 'switch switch)

(assert! '(frame ,switch type :value 3k-rpc))

(assert! '(frame ,switch name :value ,switch))

SSM/PMAD Technical Reference
III-63

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II
MCR-89-516

July 1990

(assez_ !

(assert !

(assert !

(assert !

(assert !

(assert;!

(assert !

(assert !

(assert !

(assert i

(frame ,switch curren¢-trippable :value true))

(frame ,switch current-rating :value ,(/ 3000 *voltage*)))

(frame ,switch fast-trip-percent :value %75))

(frame switch over-current-percent :value 120))

(frame switch under-voltage-trippable :value true))

(frame ,switch under-voltage-value :value 60))

(frame ,switch llp :value 11p-h))

(frame ,switch power-rating :value 3000))

(frame ,switch upper-node :value h-node2))

(frame ,switch cable-in :value llp-h-cable-l)))

(assert! '(frame h02 lower-node :value h-node3))

(assert! '(frame hOE lower-node :value h-node4))

(assert! '(frame h04 lower-node :value h-nodeS))

(assert! '(frame hOE lower-node :value h-node6))

(assert! '(frame h06 lower-node :value h-nodeT))

(asser$! '(frame h07 lower-node :value h-node8))

(assert!

(assert!

(assert!

(assert!

(assert)

(assert!

(frame h02 cable-out :value llp-h-cable-2))

(frame h03 cable-out :value llp-h-cable-3))

(frame h04 cable-out :value 11p-h-cable-4))

(frame h05 cable-out :value llp-h-cable-E))

(frame h06 cable-out :value llp-h-cable-6))

(frame hOT cable-ou_ :value llp-h-cable-7))

;;;load center b switches

(dolist (switch '(bOO bO% b02 b03 b04 hOE b06 b07 bOB b14 bl5 b16 b17 bl8

b19 b20 b21 b22))

(fcreate-instance 'switch switch)

(assert! '(frame ,switch type :value lk-rpc))

(assert! '(frame ,switch name :value ,switch))

(if (< (read-from-scring (subseq (foz_aat nil "'a" switch) I)) 10)

(assert! '(fraae ,switch cable-in :value llp-a-cable-2))

(assert! '(frame ,switch cable-in :value llp-h-cable-2)))

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

switch current-trippable :value true))

switch current-rating :value ,(/ 1000 *voltage*)))

switch fas_-_rip-percen_ :value 175))

switch over-current-percent :value 120))

switch under-voltage-trippable :value true))

switch under-voltage-value :value 60))

switch llp :value ilp-b))

switch poeer-rating :value 1000)))

;;;load center c switches

(dolist (switch '(cO0 cO1 c02 c03 c04 cOS c06 cO? c08 c14 clE c16 cl? c18

c19 c20 c21 c22))

(fcreate-instance 'switch switch)

(assert! '(frame ,switch type :value Ik-rpc))

SSM/PMAD Technical Reference
III-64

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! '(frame ,switch name :value ,switch))

(if (< (read-from-string (subseq (format nil "'a" switch) 1)) 10)

(assert! '(frame .switch cable-in :value llp-a-cable-3))

(assert! '(frame .s,itch cable-in :value 11p-h-cable-3)))

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(frame ,switch current-trippable :value true))

(frame ,switch current-rating :value ,(/ 1000 *voltage*)))

(frame ,switch fast-trip-percent :value 175))

(frame ,switch over-current-percent :value 120))

(frame ,switch under-voltage-trippable :value true))

(frame ,switch under-voltage-value :value 60))

(frame ,switch llp :value llp-c))

(frame ,switch power-rating :value 1000)))

;;;load center d switches

(dolist (switch '(dO0 dO1 dO2 dO3 dO4 dO5 dO6 dO7 dO8 d14 dis d16 d17 d18

dl9 d20 d21 d22))

(fcreate-instance 'switch switch)

(assert! '(frame ,switch type :value lk-rpc))

(assert! '(frame .switch name :value .switch))

(if (< (read-from-string (eubeeq (format nil "'a" switch) I)) I0)

(assert! '(frame .switch cable-in :value lip-a-cable-4))

(assert! '(frame .switch cable-in :value 11p-h-cable-4)))

(assert! '(frame switch current-trlppable :value true))

(assert! '(frame switch current-rating :value .(/ I000 *voltago*)))

(assert! '(frame s,itch fast-trip-percent :value 178))

(assert! '(frame switch over-current-percent :value 120))

(assert! '(frame switch under-voltage-trippable :value true))

(assert! '(frame switch under-voltage-value :value 60))

(assert! '(frame switch llp :value llp-d))

(assert! '(frame .switch power-ratin E :value I000)))

;;;load center • switches
(dolist (switch '(wOO eO1 e02 e03 e04 sO8 e06 e07 e08 el4 el5 el6 el7 el8

el9 e20 e21 e22))

(fcreate-instance 'switch switch)

(assert! '(frame .switch type :value Ik-rpc))

(assert! '(frame .switch name :value .switch))

(if (< (read-from-string (subseq (format nil "'a" switch) 1)) 10)

(assert! '(frame .switch cable-in :value lip-a-cable-5))

(assert! '(frame .switch cable-in :value 11p-h-cable-5)))

(assert! '(frame .switch current-trippable :value true))

(assert! '(frame .switch current-rating :value .(/ I000 *voltages)))

(assert! '(frame .switch fast-trip-percent :value 175))

(assert! '(frame .switch over-current-percent :value 120))

(assert! '(frame .switch under-voltage-trippable :value true))

(assert! '(frame ,switch under-voltage-value :value 60))

(assert! '(frame ,switch llp :value llp-e))

(assert! '(frame ,switch power-rating :value 1000)))

SSM/PMAD Technical Reference
III-65

Appendix rII

SSM/PMA D Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

; ; ;load center f switches

(doliet (switch '(fO0 fO1 f02 f03 f04 f06 f06 f07 fOB f14 flS fl6 f17 f18

f19 f20 f21 f22)1

(!create-instance 'switch switch1

(assert '(frame ,switch type :value lk-rpc))

(assert '(frale ,switch hale :value ,switch))

(if (< (read-from-string (subeeq (forlat nil "'a" switch) 11) 10)

(assert! ' (frame ,svitch cable-in :value lip-a-cable-6))

(assert ! '(frame .switch cable-in :value llp-h-cable-6)))

(assert '(frame .switch currant-trippable :value true))

(asser_ '(frame ,s.itch current-rating :value ,(/ 1000 *voltage*)))

(assert! '(frame switch fast-trip-percent :value 175)1

(assert! '(frame switch over-current-percent :value 120))

(assert ! ' (frame ,switch under-voltage-trippable :value true))

(assert! '(frame switch under-voltage-value :value 60))

(assert ! ' (frame switch llp :value llp-f))

(assert! '(frame switch power-rating :value 1000111

;;;load center g switches

(dolist (switch '(gO0 gO1 gO2 gO3 gO4 gO8 gO6 gOT gO8 g14 g15 g16 g17 g18

g19 g20 g21 g2211

(!create-instance 'switch switch)

(aeeer_ ! ' (frame .ewitch-_e-'_alue Ik-rpc)) - -

(aeser_c! '(frame .s,itch name :value .switchl)

(if (< (read-from-string (subeeq (format-nil "'a" swit_ch) I)) I0)

(assert ! '(frame .switch cable-in :value llp-a-cable-7))

(assert

(assert !

(aseer_ !

(asser_ !

(assert !

(assert !

(assert !

(assert !

(assert !

'(frame .switch cable-in :value lip-h-cable-7) 11

(frame switch current-trippable :value true))

(frame

(frame

(frame

(frame

(frame

(frame

(frame

switch current-rating :value , (/ 1000 *voltage*)))

swxtch fast-trip-percent :value 17S))

switch over-current-percent :value 120)1

switch under-voltage-trippable :value true))

switch under-voltage-value :value 60) 1

switch llp :value 11p-g))

switch power-rating :value 10001))

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(frame bOO cable-out :value lip-b-cable-O))

(frame b01 cable-out :value lip-b-cable-l))

(frame b02 cable-out :value lip-b-cable-2))

(frame b03 cable-out :value llp-b-cable-3))

(frame b04 cable-out :value 11p-b-cable-4))

(frame b05 cable-out :value llp-b-cable-5))

(assert! '(frame b06 cable-out :value llp-b-cable-6)_

(assert! '(frame b07 cable-out :value llp-b-cable-_))

(assert! '(frame b08 cable-out :value lip-b-cable-8))

(assert! '(frame b14 cable-out :value llp-b-cable-14))

(assert! '(frame blS cable-out :value llp-b-cable-IS1)

V

......... SS_/P-M]d3- Technical Reference
III-66

Appendix Ill

SSM/PMAD Technica/Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

x...../

(assert ! ' (frame b16 cable-out

(assert ! ' (frame b17 cable-out

(assert! ' (frame b18 cable-out

(assert ! ' (frame b19 cable-out

(assert ! ' (frame b20 cable-out

(assert ! ' (frame b21 cable-out

(assert: ' (frame b22 cable-out

(assert

(assert !

(assert !

(asser_ !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(asser_ !

(assert !

(assert !

(assert !

(assert !

(asser_ !

(assert !

(assert !

! '(frame cO0

(frame cO1

(frame c02

(frame c03

(frame c04

(frame c05

(frame c06

(frame c07

(frame c08

(frame c14

(frame c15

(frame c16

' (frame c17

'(frame c18

' (frame c19

' (frame c20

' (frame c21

'(frame c22

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

cable-out

:value

:value

: value

: value

: value

: value

: value

: value

: value

: value

: value

: value

: value

:value

: value

: value

: value

:value

:value

: value

: value

: value

:value

: value

: value

' (frame dO0 cable-out :value

(frame dO1 cable-out :value

(frame dO2 cable-out :value

(frame dO3 cable-out :value

(frame dO4 cable-out :value

(frame dOS cable-out :value

(frame dO6 cable-out :value

'(frame dO7 cable-out :value

' (frame dO8 cable-out :value

'(frame d14 cable-out :value

' (frame dis cable-out :value

'(frame d16 cable-out :value

' (frame d17 cable-out :value

'(frame d18 cable-out :value

'(frame d19 cable-out :value

'(frame d20 cable-out :value

' (frame d2l cable-out :value

' (frame d22 cable-out :value

'(frame eO0 cable-out :value

'(frame eO1 cable-out :value

llp-b-cable-16))

llp-b-cable- 17))

lip-b-cable- 18))

llp-b-cable- 19))

lip-b-cable-20))

llp-b-cabl e-21))

llp-b-cable-22))

llp-c-cable-O))

llp-c-cable-l))

llp-c-cable-2))

11p-c-cable-3))

llp-c-cable-4))

11p-c-cable-5))

llp-c-cable-6))

llp-c-cable-7))

lip-c-cable-8))

lip-c-cable-14))

lip-c-cable-15))

llp-c-cable-16))

lip-c-cable-17))

llp-c-cable-18))

lip-c-cable-19))

llp-c-cable-20))

11p-c-cable-21))

11p-c-cable-22))

llp--d-cable-O))

llp-d-cable-1))

llp-d-cable-2))

llp--d-cable-3))

llp--d-cable-4))

llp--d-cable-5))

llp--d-cable-6))

llp-d-cable-7))

llp--d-cable-8))

llp-d-cable-14))

llp-d-cable-15))

llp-d-cable-16))

llp-d-cable-17))

llp-d-cable-18))

llp-d-cable-19))

lip-d-cable-20))

llp-d-cable-21))

11p-d-cable-22))

llp-e-cable-O))

llp-e-cable-1))

SSM/PMAD Technical Reference
III-67

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert ! ' (frame e02 cable-out

(assert! ' (frame e03 cable-out

(assert ! ' (frame e04 cable-out

(assert ! ' (frame e05 cable-out

(assert ! ' (frame e06 cable-out

(assert ! ' (frame eO7 cable-out

(assert ! ' (frame e08 cable-out

(assert ! ' (frame el4 cable-out

(assert ! ' (frame el5 cable-out

(assert! '(frame el8 cable-out

(assert ! ' (frame sit cable-out

(assert ! ' (frame el8 cable-out

(assert ! ' (frame el9 cable-out

(assert! ' (frame e20 cable-out

(assert ! ' (frame e21 cable-out

(assert ! ' (frame e22 cable-out

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assort!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert !

(asser_ !

(assert !

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(frame

(frame

(frame

(frame

(frame

(frame

(frame

' (frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame
(frame

(frame
(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

fO0 cable-out

fOl cable-out

f02 cable-out

lOS cable-out

f04 cable-out

f05 cable-out

f06 cable-out

f07 cable-out

fOB cable-out

f14 cable-out

f18 cable-out

f16 cable-out

f17 cable-out

f!8 cable-out

f19 cable-out

f20 cable-out

f21 cable-out

f22 cable-out

gO0 cable-out

gOi cable-out

gO2 cable-out

gO3 cable-out

gO4 cable-out

gO5 cable-out

gO6 cable-out

gO7 cable-out

gO8 cable-out

El4 cable-out

El5 cable-out

g16 cable-out

:value llp-e-cable-2))

:value llp-e-cable-3))

:value llp-e-cable-4))

:value llp-e-cable-6))

:value llp-e-cable-6))

:value llp-e-cable-7))

:value llp-e-cable-8))

:value llp-e-cable-14))

:value llp-e-cable-16))

:value llp-e-cable-16))

:value llp-e-cable-17))

:value llp-e-cable-18))

:value llp-e-cable-19))

:value llp-e-cable-20))

:value llp-e-cable-21))

:value lip-e-cable-22))

:value llp-f-cable-O))

:value llp-f-cable-l))

:value llp-f-cable-2))

:value llp-f-cable-3))

:value llp-f-cable-4))

:value llp-f-cable-8))

:value llp-f-cable-6))

:value lip-f-cable-7))

:value 11p-f-cable-8))

:value 11p-f-cable-14))

:value 11p-f-cable-15))

:value lip-f-cable-16))

:value llp-f-cable-17))

:value 11p-f-cable-18))

:value llp-f-cable-19))

:value 11p-f-cable-20))

:value lip-f-cable-21))

:value 11p-f-cable-22))

:value llp-g-cable-O))

:value lip-g-cable-I))

:value llp-g-cable-2))

:value llp-g-cable-3))

:value 11p-g-cable-4))

:value llp-g-cable-5))

:value 11p-g-cable-6))

:value llp-g-cable-7))

:value llp-g-cable-8))

:value llp-g-cable-14))

:value llp-g-cable-I5))

:value 11p-g-cable-16))

V

SSM/PMAD Technical Reference
III-68

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

(assert; !

(asser_ !

(assert !

(assert !

(assert: !

(assert !

(frame g17 cable-out :value llp-g-cable-17))

(frase gl8 cable-out :value llp-g-cable-18))

(frame g19 cable-out :value 11p-g-cable-19))

(frame g20 cable-out :value 11p-g-cable-20))

(frame g21 cable-out :value lip-g-cable-21))

(frame g22 cable-out :value 11p-g-cable-22))

;;; create _he non-existent switches

(dolist (switch '(aO0 a08

a21 a22 a23 a24 a25 a26

hO0 h08 h09 hlO hll h12

h21 1122 h23 h24 h25 h26

b09 blO bll b12 b13 b23

c09 clO cll c12 c13 c23

dO9 dlO dll d12 d13 d23

e09 elO ell e12 e13 e23

f09 flO fll f12 f13 f23

a09

a27

h13

h27

alO all a12 a13 a14 a15 a16 a17 al8 a19 a20

h14 h15 h16 h17 hl8 h19 h20

b24 b25 b26 b27

c24 c25 c26 c27

d24 d25 d26 d27

e24 e25 e26 e27

f24 f25 f26 f27

gO9 glO gll g12 g13 g23 g24 g25 g26 g27))

(fcreate-instance 'seitch seitch)

(assez_! '(frame ,switch name :value ,suitch)))

;;; sensors

(dolist (sensor '(amO aml am2 am3 am4 am5 am6 amT))

(fcreate-ins_ance 'sensor sensor)

(assert! '(frame .sensor name :value ,sensor)))

(dolis_ (sensor '(hmO hml hn2 hm3 hm4 tm5 hm6 hm7))

(fcrsate-instance 'sensor sensor)

(assert! '(frame ,sensor name :value ,sensor)))

(dolist (sensor '(bmO bml cmO cml duO dul emO eml fmO fml gmO Eml))

(fcreate-instance 'sensor sensor)

(assert! '(frame ,sensor name :value ,sensor)))

;;; make non-existent sensors

(dolist (sensor '(am8 am9 amlO atoll aml2 aml3 am14 aml5

hn8 hm9 hmlO hmll hul2 hm13 hml4 hml5

bm2 bm3 bm4 bn5 bm6 bm7 bm8 bm9 bmlO bnll bm12 bml3 bml4 bm15

cm2 cm3 cm4 cm5 cm6 cm7

dm2 du3 dm4 dm5 dm6 dm7

era2 era3 era4 era5 era6 am7

fm2 fm3 fm4 fm5 fm6 fm7

_2 _3 _4 gm5 gm6 gm7
))

cm8 cm9 cmlO cnll cml2 cml3 cml4 cml5

du8 dm9 dulO dm11 dm12 dm13 dm14 dm15

em8 em9 emlO em11 em!2 em13 em14 em15

fm8 fm9 fmlO fm11 fm12 fm13 let4 fm15

gm8 gm9 gmlO gmll g112 gm13 gm14 gm15

(fcreate-instance 'sensor sensor)

SSM/PMAD Technical Reference
III-69

Appendix IH

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! '(frame ,sensor name :value ,sensor)))

;;; start hooking things together

;;;siblings

(assert! '(frame a02 siblings :value (sOS sO4 sO5

(assert! '(frame a03 siblings :value (sO2 sO4 sO5

(assert! '(frame a04 siblings :value (sO2 sO3 sO5

(assert! '(frame a05 siblings :value (a02 sO3 a04

(assert! '(frame a06 siblings :value (a02 sOS a04

(assert! '(frame sO7 siblings :value (sO2 sOS a04

(assert! '(frame h02 siblings :value (h03 h04 h05

(assert! '(frame h03 siblings :value (h02 h04 h05

(assert! '(frame h04 siblings :value (h02 h03 h05

(assert! '(frame h05 siblings :value (h02 h03 h04

(assert! '(frame h06 siblings :value (h02 h03 h04

(assert! '(frame hOT siblings :value (h02 h03 h04

(assert! '(frame bOO

(assert! '(frame bO1

(assert! '(frame b02

(assert! '(frame b03

(assert! '(frame b04

(assert! '(frame b05

(assert! '(frame b06

(assert! '(frame b07

(assert! '(frame b08

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

:value (bOl b02 b03

:value (bOO b02 b03

:value (bOO bOl b03

:value (bOO i)01 b02

:value (bOO bOl b02

:value (bOO bO1 b02

:value (bOO bO1 b02

:value (bOO bO! b02

:value (bOO bO1 b02

(assert! '(frame bl4

(assert! '(frame b15

(assert! '(frame b16

(assert! '(frame b17

(assert! '(frame b18

(assert! '(frame b19

(assert! '(frame b20

(assert! '(frame b21

(assert! '(frame b22

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

:value (b15 b16 b17

:value (b14 b16 b17

:value (b14 b15 b17

:value (b14 b15 b16

:value (b14 b15 b16

:value (b14 b15 b16

:value (b14 b15 b16

:value (bi4 bi5 b16

:value (b14 b15 b16

(assert! '(frame cO0

(assert! '(frame cOl

(assert! '(frame c02

(assez_! '(frame c03

(assert! '(frame c04

(assert! '(frame cO5

(assert! '(frame c06

(assert! '(frame cO7

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

:value (cO1 c02 c03

:value (cOO c02 ¢03

:value (cOO cOl c03

:value (cOO cO1 c02

:value (cOO cO_ c02

:value (cOO cO1 c02

:value (cOO cO1 c02

:value (cOO cOl c02

sO8 sO7)))

aOe sO7)))

aOe sO7)))
aoe sOT)))
sOS sO7)))
sO5 a0e)))

hOe hOT)))
hOe hOT)))

hOe hOT)))

hOe h07)))

hOe hOe)))
h05 h07)))

b04 bO5 bOe b07 b08)))

b04 b05 b06 b07 b08)))

b04 b05 bOe b07 b08)))

b04 b05 hOe b07 bO8)))

bO3 b05 bOe b07 b08)))

b03 1)04 bO6 b07 b08)))

b03 1:,04 b05 b07 b08)))

b03 bo4 b05 hOe b08)))

bO3 b04 bOB bOe b07)))

b18 b19 b20 b21 b22)))

b18 b19 b20 b21 b22)))

b18 blg b20 b21 b22)))

b18 b19 b20 b21 b22)))

b17 b19 b20 b21 b22)))

b17 b18 b20 b21 b22)))

b17 b18 b19 b21 b22)))

b17 b18 b19 b20 b22)))

b17 b18 b19 b20 b21)))

c04 cO5 cO6 c07 c08)))

c04 c05 c06 c07 c08)))

c04 c05 c06 cO7 c08)))

c04 c05 c06 c_ _ c08)))

c03 c05 c06 cO7 c08)))

c03 c04 cO6 cO7 c08)))

c03 c04 c05 c07 c08)))

c03 c04 c05 c06 c08)))

SSM/PMAD Technical Reference
III-70

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II

MCR-89-516

July 1990

k.j

(assert! '(Irame cOS siblings :value (cO0 cO1 c02

(assert !

(assert !

(assert !

(assert !

(asser'c !

(assert !

(assert !

(assert !

(assert !

(asser_ !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assere!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert;!

(assert!

(assert!

(assert!

(assez_!

(assert!

(asser_!

(assert!

(asse_!

(assex-g!

(assex_!

(assert!

(assert!

(assert!

(assert!

(assert!

(aaserC!

c03 c04 c06 c06 cO7)))

'(fraae c14 siblings :value (c16 c16 c17 c18

'(frame c15 siblings :value (c14 c16 c17 c18

(frame c16 siblings :value (c14 c16 c17 c18

(frss, e c17 siblings :value (c14 clS cl8 c18

(frame c18 siblings :value (c14 clS c16 c17

(frame c19 siblings :value (c14 clS c16 c17

(frame c20 siblings :value (c14 c16 c16 c17

(frame c21 siblings :value (cl4 cl5 cl6 cl7

(frame c22 siblings :value (cl4 cl5 cl6 c17

'(frame dO0 siblings :value (dOI dO2 dO3 dO4

'(frame dO1 siblings :value (dO0 dO2 dO3 dO4

'(frame dO2 siblings :value (dO0 dOS dO3 dO4

'(frame dO3 siblings :value (dO0 dOS dO2 dO4

'(frame dO4 siblings :value (dO0 dOS dO2 dO3

'(frame dO8 siblings :value (dO0 dOS dO2 dO3

'(frame dO6 siblings :value (dO0 dOS dO2 dO3

'(frame dO7 siblings :value (dO0 dOS dO2 dO3

'(frame dO8 siblings :value (dO0 dOS dO2 dO3

'(frame d14 siblings :value (dl5 dl6 dl7 d18

'(frame dis siblings :value (d14 d16 d17 dl8

(frame d16 siblings :value (d14 dl5 dl7 dl8

(frame d17 siblings :value (d14 d16 d16 dl8

(frame dl8 siblings :value (dl4 dlS dl6 dl7

(frame dl9 siblings :value (d14 dis dl6 d17

(frame d20 siblings :value (d14 d16 d16 d17

(frame d21 siblings :valuo (d14 dis d16 d17

(frame d22 siblings :value (dl4 dis d16 d17

'(frame sO0

'(frame sO1

'(frame sO2

'(frame sO3

'(frame o04

'(frame e05

'(frame e06

'(frame e07

'(frame e08

siblings

siblings

siblings

siblings

siblings

sibla_gs

:value (sO1
:value (sO0

:value (sO0

:value (sO0

:value (sO0

:value (sO0

siblings :value (sO0

siblings :value (sO0

siblings :value (sO0

e02 e03 e04

e02 e03 e04

eOl eO3 e04

eOI sO2 sO4

eOl sO2 sO3

sOl sO2 sO3

sOl sO2 e03

sOl sO2 sO3

sO1 002 sO3

el4 siblings :value (eIS el6 el7 e18

e15 siblings :value (o14 el6 el7 el8

el6 siblings :value (el4 ei5 el7 el8

e17 sibling8 :value (e14 e15 e16 e18

e18 siblings :value (e14 el5 el6 e17

e19 siblings :value (el4 eI5 eI6 el7

(frame

(frame

(frame

(frame

(frame

(frame

cl9 c20 c21 c22)))

c19 c20 c21 c22)))

c19 c20 c21 c22)))

cl9 c20 c21 c22)))

c19 c20 c21 c22)))

c18 c20 c21 c22)))

cl8 cl9 c21 c22)))

cl8 c19 c20 c22)))

c18 c19 c20 c21)))

dos dos ao7 dos)))
dOS dO6 dO7 dOS)))
dOS dO6 dO7 dO8)))
dOS dOe dO7 dOS)))
dOS dOe dO7 dO8)))
dO4 dOe dO7 dOS)))
dO4 dO5 d07 d08)))
do4 dos doe dos)))
dO4 dO5 dO6 dO7)))

d19 d20 d21 d22)))

d19 d20 d21 d22)))

d19 d20 d21 d22)))

d19 d20 d2I d22)))

d19 d20 d21 d22)))

dI8 d20 d21 d22)))

dl8 d19 d21 d22)))

dl8 d19 d20 d22)))

dl8 d19 d20 d2l)))

e05 e06 e07 e08)))

eO5 e06 e07 sO8)))

e05 e06 sO7 sO8)))

eOS e06 e07 e08)))

e05 e06 e07 sO8)))

sO4 sO8 sO7 sO8)))

e04 e05 e07 e08)))

e04 eOS e06 e08)))

sO4 eOS e06 e07)))

el9 e20 e21 e22)))

el9 e20 e21 e22)))

el9 e20 e2I e22)))

el9 e20 e21 e22)))

el9 e20 e21 e22)))

el8 e20 e21 e22)))

SSM/PMAD Technical Reference
III-71

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

(assert, '(frame

(assert ! '(frame

(asser_ ! '(frame

e20 siblings :value (e%4

e21 siblings :value (e14

e22 siblings :value (el4

(assert!

(assert!

(assert!

(assert!

(asser¢!

(assert!

(assert!

(assert!

(assert!

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(fr=e

(frame

fO0

fol
f02

f03

f04

lOS

f06

f07

f08

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

el5 e16 el7 el8 el9 e21 e22)))

el5 el6 el7 el8 el9 e20 e22)))

e15 e16 el7 el8 el9 e20 e21)))

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame
(usert! '(frame

(assert! '(frame

(assert! '(frame

f14

f15

f16

f17

fl8

f19

f20

f21

f22

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

:value (fOl f02 f03

:value (fO0 f02 f03

:value (fO0 fO1 f03

:value (fO0 f01 f02

:value (fO0 f01 f02

:value (fO0 fOl f02

:value (fO0 f01 f02

:value (fO0 f01 f02

:value (fO0 fOl f02

(assert! '(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame
(assert! '(frame

(assert! *(frame

(assert! '(frame

(assert! '(frame

(assert! '(frame

gO0

gO1

gO2

gO3

g04
gO5

gO6

gO7

gO8

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

f04 los foe f07 los)))

f04 los fob f07 f08)))

f04 los foe f07 los)))

f04 f05 f06 f07 f08)))

f03 lOS f06 f07 f08)))
f03 f04 foe f07 fOB)))
f03 f04 lOS f07 f08)))

f03 f04 f05 los lOS)))

f03 f04 los los f07)))

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

'(frame g14

'(frame gl8
'(frame glS

(frame El?

(frame El8

(frame glg
(frame g20

(frame g21

(frame g22

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

siblings

:value (f15 f16 f17 fl8 f19 f20 f21 f22)))

:value (f14 f16 f17 f18 f19 f20 f21 f22)))

:value (f14 f15 f17 fl8 f19 f20 f21 f22)))

:value (f14 fl8 f16 fl8 f19 f20 f21 f22)))

:value (f14 f15 f16 f17 f19 f20 f21 f22)))

:value (f14 f15 f16 f17 f18 f20 f21 f22)))

:value (f14 fI5 f16 f17 fl8 f19 f21 f22)))

:value (f14 f15 f16 f17 f18 f19 f20 f22)))

:value (f14 f15 f16 fi7 fl8 f19 f20 f21)))

;;;switch above

:value (gO1 gO2 gO3 gO4 gOS gO6 gO7 gO8)))

:value (gO0 gO2 gO3 gO4 gO5 gO6 gO7 gO8)))

:value (gO0 801 gO3 gO4 gO5 gO6 gO7 gO8)))

:value (gO0 gO1 gO2 gO4 gO5 gO6 gO7 gO8)))

:value (gO0 gO1 gO2 gO3 gO5 gO6 gO7 gO8)))
:value (gO0 gOt gO2 gO3 gO4 gO6 gO7 gO8)))

:value (gO0 gO1 gO2 gO3 gO4 gO5 gO7 gO8)))

:value (gO0 gO1 gO2 gO3 gO4 gOS gO6 gO8)))

:value (gO0 g01 gO2 g03 gO4 gO8 gO6 gO7)))

:value (giS g16 g17 g18 g19 g20 g21 g22)))

:value (g14 g16 gl7 g18 g19 g20 g21 g22)))

:value (g14 g15 g17 g18 g19 g20 g21 g22)))

:value (g14 g18 g16 g18 g19 g20 g21 g22)))

:value (g14 g15 g16 g17 g19 g20 g21 g22)))

:value (g14 g15 g18 g17 g18 g20 g21 g22)))

:value (g14 g15 g16 g17 g18 gl9 g21 g22)))

:value (g14 g15 g16 g17 g18 g19 g20 g22)))

:value (g14 g15 g16 g17 g18 g19 g20 g21)))

(assert! '(frame a02 switch-above :value a01))

(assert! '(frame a03 switch-above :value aO1))

SSM/PMAD Technical Reference
III-72

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! '(frame a04 sui¢ch-above :value a01))

(assert! ' (frame a08 switch-above :value a01))

(assert! '(frame a06 suitch-above :value a01))

(assert ! ' (frame a07 s¢itch-above :value aO1))

(assert! ' (frame h02 swi¢ch-above :value hOl))

(assert! '(fraae h03 switch-above :value hO1))

(assert! '(frale h04 switch-above :value h01))

(assert! '(frame hOB switch-above :value hO1))

(assert ! ' (frame h06 swi¢ch-above :value hO1))

(assert! '(frame hOT switch-above :value hOl))

(assert ! '(frame bOO switch-above :value a02))

(assert! '(frame bOl switch-above :value a02))

(assert ! '(frame b02 switch-above :value a02))

(assert! '(frame b03 switch-above :value a02))

(assert! '(frame b04 switch-above :value a02))

(assert! '(frame hOE switch-above :value a02))

(assert! '(frame b06 switch-above :value a02))

(assert! '(frame bOT switch-above :value a02))

(assert! '(frame b08 switch-above :value a02))

(assert! '(frame cOO switch-above :value aO3))

(assert! '(frame cOl switch-above :value aO3))

(assert! '(frame c02 switch-above :value aO3))

(assert ! '(frame cOS switch-above :value aOS))

(assert! '(frame c04 switch-above :value aO3))

(assert! '(frame c08 switch-above :value a03))

(assert ! '(frame c06 switch-above :value a03))

(assert! '(frame c07 switch-above :value a03))

(assert! '(frame c08 switch-above :value a03))

(assert! '(frame dO0 switch-above :value a04))

(assert! ' (frame dO1 switch-above :value a04))

(assert! '(frame dO2 switch-above :value a04))

(assert ! ' (frame dOS $vitch-above :value a04))

(assert ! ' (frame dO4 switch-above :value a04))

(assert ! ' (frame dO8 switch-above :value a04))

(assert ! ' (frame dO6 switch-above :value a04))

(assert! ' (frame dO7 switch-above :value a04))

(assert! '(frame dO8 switch-above :value a04))

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(frame eO0 switch-above :value a05))

(frame eO1 switch-above :value a05))

(frame sO2 switch-above :value a05))

(frame e03 switch-above :value a05))

(frame e04 switch-above :value aO8))

(frame e05 switch-above :value aO8))

SSM/PMAD Technical Reference
III-73

Appendix !II
SSM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

(asser_ ! '(frame

(assert' '(frame

(asser¢! '(frame

(assert : (frame

(assert ! (frame

(assert ! (frame

(assert ! (frame

(assert ,' (frame

(assert ! (frame

(assert ! (frame

(assert ! (frale

(assert ! '(frame

(assert ! ' (frame

(assert ! '(frame

(assert ! '(frame

(asser_ ! '(frane

(assez¢! '(frame

(assert! '(fraae

(assert! '(frame

(assert! '(frale

(assert! '(fraae

(asser_ ! '(frame

(assert ! ' (frame

(assert ! '(frame

(asser_ ! '(frame

(assert ! '(frame

(asserZ ! ' (frame

(assert ! ' (frame

(asser¢! '(frame

(assert ! '(frame

(assert ! '(frame

(assert ! (frame

(assert ! (frame

(assert ' (frame

(assert ! (frame

(asserZ ! (frame

(assert ! (frame

(assert ! (frale

(asser_ ! (frame

(assert! '(frane

(assert! '(frame

(assert! '(frane

(assert! '(frane

e06 switch-above :value a06))

e07 suitch-above :value a08))

e08 switch-above :value aO5))

fO0 switch-above :value a06))

fOl switch-above :value aO6))

f02 switch-above :value a06))

f03 mwitch-above :value a06))

f04 switch-above :value a06))

f05 8witch-above :value a06))

f06 switch-above :value a06))

f07 switch-above :value a06))

fOB sgitch-above :value a06))

gO0 switch-above :value a07))

gOl svizch-above :value a07))

gO2 switch-above :value a07))

gO3 switch-above :value a07))

E04 switch-above :value a07))

_05 switch-above :value a07))

gO6 s_i_ch-above :value a07))

gO7 switch-above :value aO7))

gO8 sgi_ch-a_ove :value a07))

b14 switch-above :value h02))

b18 switch-above :value h02))

b16 sgi_ch-above :value h02))

b17 sgi_ch-above :value h02))

b%8 sgi_ch-above :value h02))

hi9 8vi_ch-above :value h02))

_20 switch-above :value h02))

b21 sgitch-above :value h02))

b22 sgi_ch-above :value h02))

c14 switch-above :value hO3))

c15 sei¢ch-above :value h03))

c16 swi¢ch-above :value hOS))

c17 swizch-above :value hO3))

c18 sui¢ch-above :value hO3))

c19 svi¢ch-above :value hO3))

c20 sei¢ch-above :value hOS))

c21 s_i_ch-above :value hO3))

c22 switch-above :value h03))

d14 swi_ch-a_ove :value h04))

dis swi_ch-a_ove :value h04))

d16 switch-above :value h04))

d17 switch-above :value h04))

SSM/PMAD Technical Reference
III-74

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(asser_ ! ' (frame d18 switch-above :value h04))

(assert ! ' (frame d19 switch-above :value h04))

(assert! '(frame d20 switch-above :value h04))

(assert! '(frame d21 switch-above :value h04))

(assert! '(frame d22 switch-above :value h04))

(assert !

(assert !

(assert !

(assert !

(asserZ !

(assert g

(assert !

(assert !

(assert !

' (frame el4 switch-above :value hO5))

' (frame e18 switch-above :value h05))

'(frame el6 switch-above :value h05))

(frame el7 switch-above :value h05))

(frame el8 switch-above :value hO8))

(frame el9 switch-above :value h05))

(frame e20 switch-above :value h05))

(frame e21 s.itch-above :value h05))

(frame e22 switch-above :value hO5))

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(asser_ !

(assert !

(assert !

' (frame f14 switch-above :value h06))

'(frame f15 switch-above :value h06))

' (frame f16 switch-above :value h06))

'(frame f17 switch-above :value h06))

'(frame f18 switch-above :value h06))

' (frame f19 switch-above :value h06))

' (frame f20 switch-above :value h06))

' (frame f21 switch-above :value h06))

' (frame f22 switch-above :value h06))

(assert!

(assert!

(assert!

(assert)

(assert!

(assert!

(assert!

(assert!

(assert!

(frame g14 switch-above :value hOT))

(frame g15 switch-above :value hOT))

(frame g16 switch-above :value h07))

(frame gl7 switch-above :value hOT))

(frame g18 switch-above :value h07))

(frame g19 switch-above :value hOT))

(frame g20 switch-above :value hOT))

(frame g21 switch-above :value hOT))

'(frame g22 switch-above :value hOT))

;;; switches-below

(assert! '(frame aO! switches-below :value (a02 a03 a04 sO5 sO6 sO7)))

(assert! '(frame hO1 switches-below :value (h02 h03 h04 hO5 h06 h07)))

(assert! '(frame sO2 switches-below :value

(bOO bO1 b02 b03 b04 b05 b06 b07 b08)))

(assert! _(frame a03 switches-below :value

(cOO cO1 c02 c03 c04 cO5 c06 c07 c08)))

(assert! '(frame sO4 switches-below :value

(dO0 dO1 dO2 dO3 dO4 dO5 dO6 dO7 dO8)))

SSM/PMAD Technical Reference
III-75

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(asser_c

(eO0

(asser_

(_oo
(assert;

(goo
(asser_

(b14

(asser_

(c14

(asser_

! '(frame aO5 switches-below

eOl e02 e03 e04 e05 e06 e07

! '(frame a06 svitches-below

fO1 f02 f03 f04 lOS f06 f07

! '(fraue nO7 seitches-below

gO1 gO2 gO3 gO4 gO5 gO6 gO7

! '(frame h02 switches-belog

b15 b16 b17 b18 b19 b20 b21

!'(frane h03 suitches-belog

c15 c16 c17 c18 c19 c20 c21

! _(frane h04 sgitches-beloe

(dl4 d15 d16 d17 dl8 d19 d20 d21

(assert! '(frame hOB sei_ches-below

(el4 e15 el6 el7 o18 o19 e20 e21

(assert! '(frame h06 switches-belog

(fl4 f15 f16 f17 f18 f19 f20 f21

(assert! '(frame h07 switches-below

(g14 g15 g16 g17 g18 g19 g20 g21

:value

eo8)))
:value

foe)))

:value

gO8)))

:value

bRR)))

: value

¢22)))

:value

d22)))

:value

e22)))

:value

f22)))

:value

g22)))

;;; corresponding-sensors

(assert!

(assert!

(assort!

(assert;!

(assert!

(assert!

(assort!

(frame aO1

(frame nO2

(frame a03

(frame nO4

(frane aO8

(frane nO6

(frame a07

corresponding-sensors

corresponding-sensors

corresponding-sensors

corresponding-sensors

corresponding-sensors

corresponding-sensors

corresponding-sensors

:value (amO -,,,1)))

:value (am2 bnO)))

:value (a3 cmO)))

:value (am4 dnO)))

:value (an5 emO)))

:value (a6 fmO)))

:value (am7 gmO)))

(assert

(assert

(assert

(assert

(assert;

(assort;

(assert

! (frame

! (frame

! (frame

! (frame

! (frame

! (frame

! (frame

h01 corresponding-sensors

h02 corresponding-sensors

h03 corresponding-sensors

h04 corruponding-sensors

h05 corresponding-sensors

h06 corresponding-sensors

hOT corresponding-sensors

:value (hmO hml)))

:value (hm2 bnl)))

:value (_,,,3 cml)))

:value (hn4 dnl)))

:value (has eml)))

:value (hn6 fml)))

:value (hm7 gml)))

;;; sensor-above and top-sensor

(assert! '(frame nO1 sensor-above amO))

(assert! '(frame a01 cop-sensor anO))

(dolist (switch '(nO2 nO3 nO4 a05 a06 nO7))

(assert! '(frame ,switch sensor-above :value all))

(assert! '(frame .switch top-sensor :value amO)))

(assert! '(frame hO1 sensor-above hmO))

(assert! '(frame h01 top-sensor hmO))

(dolist (switch '(h02 h03 h04 h05 h06 h07))

r_

SSM/PM_AD Technical Reference
Ill-76

MJ

AppendJx III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! ' (frame ,switch sensor-above :value hal))

(assert ! ' (frame ,switch top-sensor :value haO)))

(dolist (switch '(bOO bO1 b02 b03 b04 bee b06 b07 bOB))

(assert ! ' (frame ,switch sensor-above :value bmO))

(assert! ' (frame ,switch top-sensor :value amO)))

(dolist (switch '(b14 b15 b16 b17 b18 b19 b20 b2l b22))

(assert! '(frame ,switch sensor-above :value hal))

(assert! '(frame ,switch top-sensor :value haO)))

(dolist (switch '(cOO cO1 c02 c03 c04 cO5 c06 c07 c08))

(assert) '(frame ,switch sensor-above :value cmO))

(assert! '(frame ,switch top-sensor :value amO)))

(dolist (switch '(c14 c15 c16 c17 c18 c19 c20 c21 c22))

(assert! '(frame ,switch sensor-above :value cml))

(assert! '(frame ,switch top-sensor :value hmO)))

(dolis_ (switch '(dO0 dO1 dO2 dO3 dO4 dOS dO8 dO7 dO8))

(assert! '(frame .switch sensor-above :value dmO))

(assert! '(frame ,switch top-sensor :value amO)))

(dolist (switch '(d14 dl8 d16 d17 dl8 d19 d20 d21 d22))

(assert! '(frame ,switch sensor-above :value dml))

(assert! '(frame ,switch top-sensor :value haO)))

(dolist (switch '(sO0 eO1 e02 e03 cO4 e05 cO6 e07 e08))

(assert! '(frame ,switch sensor-above :value smO))

(assert! '(frame ,switch top-sensor :value amO)))

(dolist (switch '(el4 elS el6 el7 el8 el9 e20 e21 e22))

(assert! '(frame ,switch sensor-above :value sml))

(assert! '(frame ,switch top-sensor :value haO)))

(dolist (switch '(S00 SO1 f02 f03 f04 f05 f06 f07 f08))

(assert! '(frame ,switch sensor-above :value fmO))

(assert! '(frame ,switch top-sensor :value amO)))

(doZier (switch '(f14 fie f16 f17 fl8 f19 f20 f21 f22))

(assert! '(frame ,switch sensor-above :value fml))

(assert! '(frame ,s.itch top-sensor :value haO)))

(dolist (switch '(gO0 gO1 gO2 gO3 gO4 gO5 gO6 gO7 gO8))

(assert! '(frame .switch sensor-above :value gmO))

(assert! '(frame ,switch top-sensor :value amO)))

(dolist (switch '(g14 g15 g16 g17 g18 g19 g20 g21 g22))

SSM/PMAD Technical Reference
III-77

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! ' (frame ,switch sensor-above iVLlue gni))

(assert ! '(frame ,switch _op-sensor :value haO)))

; ; ; redundan_ sgitches

(assert !

(assert !
(assort :

(assert !

(asser_ !

(assert :
(assert !

(assert :

(assert !

(frame bOO redundant-switch :value b14))

(frame bO1 redundant-switch :value bl$))

(frame b02 redundant-switch :value b16))

(frame b03 redundant-switch :value b17))

(frame b04 redundant-switch :value bl8))

(frame b05 redundant-seitch :value b19))

(frame b06 redundant-switch :value b20))

'(frame b07 redundant-switch :value b21))

'(frame b08 redundant-switch :value b22))

(assor_ !

(asser_ !

(asser_ !

(asser_ !

(assert !

(assert !

(asser'c !

(assert !

(assert !

'(frame b14 redundant-switch :value bOO))

'(frame b15 redundant-switch :value bO1))

'(frame b16 redundant-seitch :value b02))

(frame b17 rsdundant-seitch :value b03))

(frame bl8 redundant-sgitch :value b04))

(frame b19 redundant-switch :value b05))

(frame b20 redundant-suitch :value b06))

(frano b21 redundant-sgitch :value bO7))

(frame b22 redundant-sgitch :value bOB))

(asser_ :

(assort !

(asser_ :

(asser_ !

(asser_ !

(asser_ !

(asser_ !

(assert !

(assert ;

(fraae cOO redundant-switch :value c14))

(frame cOl redundant-switch :value c15))

(frame c02 redundant-switch :value ¢16))

(frame c03 redundant-switch :value ¢17))

(frame c04 redundant-switch :value ¢18))

(frame cOS rsdundant-svitch :value c19))

(frame ¢06 rsdundant-svitch :value ¢20))

(frame c07 redundant-switch :value c21))

(frame c08 redundant-switch :value ¢22))

(assert !

(assert !

(asser_ !

(ass er'c !

(assert :

(assert !

(assert !

(assert !

(asser'c !

'(frame c14 redundant-switch :value cOO))

'(fraae c15 redundant-sgitch :value cO1))

'(frame c16 rsdundant-sgitch :value c02))

' (frame c17 redundane-switch :value c03))

'(frame c18 redundant-switch :value c04))

'(frame c19 redundant-switch :value c05))

' (frame c20 redundant-switch :value c06))

'(frame c21 rodundant-sgitch :value cO7))

' (frame ¢22 redundant-switch :value c08))

(assert !

(assert !

(asser_ !

' (frame dO0 redundant-seitch :value d14))

'(frame dO1 redundant-switch :value diS))

'(frame dO2 redundant-seitch :value d16))

%_/

SSM/PMAD Technical Reference
III-78

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert !

(assert!

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert !

(assert!

(assert !

(assert !

(assert !

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

(frame

(frane

(frame

(frame

(frane

(frame

(frame

(frane

(frane

(frane

(frane

(frame

(frane

(frame

(frane

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(frame

(:frame

(frame

(frame

(frame

' (frame

' (fraue

' (frame

' (:frame

' (:frame

' (frame

' (:frame

' (frame

' (:frame

' (:frame

' (frame

' (frame

dO3 redundant-switch :value dlT))

dO4 redundant-svitch :value dle))

dO5 redundant-svitch :value d19))

dO6 redundant-switch :value d20))

dO7 redundant-switch :value d21))

dO8 redundant-sgitch :value d22))

d14 redundant-sgitch :value dO0))

d15 redundant-switch :value dO1))

d16 redundant-switch :value dO2))

d17 redundant-switch :value dO3))

dl8 redundant-switch :value dO4))

d19 redundant-switch :value dO5))

d20 redundant-switch :value dO6))

d21 redundant-switch :value dO7))

d22 redundant-switch :value dO8))

eO0 redundant-seitch :value el4))

eO1 redundant-eei_ch :value elS))

e02 redundant-switch :value el6))

sO3 redundant-seitch :value el7))

e04 redundant-switch :value el8))

eO8 redundant-switch :value el9))

e06 redundant-switch :value e20))

sO7 redundant-switch :value e21))

sO8 redundant-switch :value e22))

el4 redundant-switch :value eO0))

el$ redundant-switch :value eO1))

el6 redundant-switch :value sO2))

el7 redundant-switch :value eO3))

el8 redundant-switch :value e04))

el9 redundant-switch :value sO8))

e20 redundant-switch :value sO6))

e21 redundant-switch :value sO7))

e22 redundant-switch :value sO8))

fO0 redundant-switch :value f14))

fO1 redundant-switch :value fl8))

f02 redundant-switch :value f16))

f03 redundant-switch :value flT))

f04 redundant-switch :value fl8))

f05 redundant-switch :value fl9))

f06 redundant-sgitch :value _20))

f07 redundant-switch :value f21))

foe redundant-switch :value f22))

f14 redundant-seitch :value fO0))

SSM/PMAD Technical Reference
III-79

Ai.,pendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II
MCR-89-516

July 1990

(user_! ' (frame f15

(arterY! '(frame f16

(asser_ ! ' (frame f17

(assert ! ' (frame f18

(assert! '(frame f19

(assert ! '(frame f20

(assert ! '(frame f21

(assert ! '(frame f22

(assert! ' (frame

(assert ! ' (frame

(assert! ' (frame

(assert ! ' (frame

(assert ! '(frame

(assert ! '(frame

(assert! '(frame

(assert ! '(frame

(assert ! '(frame

(assert ! ' (frame

(assert ! ' (frame

(assert! '(frame

(assert! '(frame

(assert ! ' (frame

(asser_ ! ' (frame

(assert ! ' (frame

(assert) '(frame

(assert ! ' (frame

;;; nodes for the

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-inetance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-inmtance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-instance

(fcreate-instance

redundant-switch :value f01))

redundant-switch :value f02))

redundant-switch :value f03))

redundant-switch :value f04))

redundant-switch :value fOB))

redundant-switch :value f06))

redundant-switch :value f07))

redundant-switch :value fOB))

gO0 redundant-switch :value El4))

gO1 redundant-switch :value glS))

gO2 redundant-switch :value g16))

gO3 redundant-switch :value glT))

gO4 redundant-switch :value g18))

gO5 redundant-switch :value g19))

gO6 redundant-switch :value g20))

gO7 redundant-switch :value g21))

gO8 redundant-switch :value g22))

g14 redundant-switch :value gO0))

g18 redundant-switch :value gOl))

g16 redundant-switch :value gO2))

g17 redundant-switch :value gO3))

g18 redundant-switch :value g04))

g19 redundant-switch :value gO8))

g20 redundant-switch :value gO6))

g21 redundant-switch :value gO7))

g22 redundant-switch :value gO8))

soft fault network now.

'node 'a-nodel)

'node 'a-node2)

'node 'a-node3)

'node 'a-node4)

'node 'a-nodeS)

'node 'a-node6)

'node 'a-node7)

'node 'a-node8)

'node 'h-nodel)

'node 'h-node2)

'node 'h-node3)'

'node 'h-node4)

'node 'h-nodeS)

'node 'h-node6)

'node 'h-nodeT)

'node 'h-node8)

$SM/PM_D Technical Reference
III-80

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

x..._j

(fcreate-inst_ce 'node 'b-nodel)

(fcreate-i_stance 'node 'b-node2)

(fcreate-instance 'node 'c-nodel)

(fcreate-instance 'node 'c-node2)

(fcreate-instance 'node 'd-nodel)

(fcreate-instance 'node 'd-node2)

(fcreate-instance 'node 'e-nodeI)

(fcreate-instance 'node 'e-node2)

(fcreate-instance 'node 'f-nodel)

(fcreate-instance 'node 'f-node2)

(fcreate-instance 'node 'g-nodel)

(fcreate-instance 'node 'g-node2)

;;; fill in the nodes.

(assert! '(frame a-nodel

(assert! '(frame a-nodel

(assert! '(frame a-node1

(assert! '(frame a-nodel

lower-switches :value (aOi)))

upper-sensor :value at0))

lower-sensors :value (aml)))

lower-nodes :value (a-node2)))

(assert! '(frame h-nodel

(assert! '(frame h-nodel

(assert! '(frame h-nodel

(assert! '(frame h-nodel

lower-switches :value (h01)))

upper-sensor :value haO))
lower-sensors :value (hal)))

lower-nodes :value (h-node2)))

(assert! '(frame a-node2

(assert! '(frame a-node2

(assert! '(frame a-node2

(assert! '(frame a-node2

(assert! '(frame a-node2

upper-switch :value aO1))

lower-switches :value (a02 a03 a04 nO5 a06 aO?)))

upper-sensor :value aml))

lower-sensors :value (am2 amS am4 am6 am6 am?)))

upper-node :value a-nodel))

(assert! '(frame a-node2 lower-nodes :value

(a-nodeS a-node4 a-node5 a-nodeS a-node? a-nodeS)))

(assert!

(assert!

(assert!

(assert!

(assert!

(assert!

'(frame h-node2 upper-switch :value hO1))

'(frame h-node2 lower-switches :value (h02 h03 h04 h06 h06 hOT)))

'(frame h-node2 upper-sensor :value hal))

'(frame h-node2 lower-sensors :value (ha2 ha3 ha4 ha5 ha6 ha7)))

'(frame h-node2 upper-node :value h-nodel))

'(frame h-node2 lower-nodes :value

(h-node3 h-node4 h-node5 h-node6 h-node? h-node8)))

(assert! '(frame a-nodeS upper-switch :value a02))

SSM/PMAD Technical Reference
III-81

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCRo89-516

July 1990

(assert ! '(frane a-node3 loeer-svitches :value

(bOO bO1 b02 b03 b04 bOS b06 b07 b08)))

(assert ! J (froJue a-node3 upper-sensor :value au2))

(assert ! ' (fraue a-node3 loser-sensors :value (bnO)))

(assert! '(frane a-nodeS upper-node :value a-node2))

(assert ! ' (franc a-node3 loser-nodes : value (b-nodel)))

(assert !'(frane a-node4 upper-sgitch :value a03))

(assert! J (frane a-node4 lover-sgitches :value

(cO0 cO1 c02 c03 c04 cOS c06 cO7 c08)))

(assert! '(frame a-node4 upper-sensor :value a_))

(assert ! ' (frame a-node4 lover-sensors :value (cnO)))

(assert ! ' (frame a-node4 upper-node :value a-node2))

(assert ! ' (frame a-node4 loser-nodes :value (c-node1)))

(assert! '(frame a-nodeS upper-switch :value a04))

(assert! '(frane a-nodeS lover-svitches :value

(dO0 dO1 dO2 dOS dO4 dOS dO6 dO7 dO8)))

(assert! '(frane a-nodeS upper-sensor :value an4))

(assert! '(frame a-node6 lover-sensors :value (dmO)))

(assert! '(frame a-nodeS upper-node :value a-node2))

(assert! '(frame a-nodeS lover-nodes :value (d-nodel)))

(assert! '(frame a-node6 upper-switch :value aO5))

(assert! J(frame a-node6 loeer-svitches :value

(oO0 sO1 002 sOS 004 sOS 006 o07 008)))

(assert! '(frame a-node6 upper-sensor :value artS))

(assert! '(frame a-node6 lover-sensors :value (onO)))

(assert! _(frame a-node6 upper-node :value a-node2))

(assert! J(frame a-node6 lover-nodes :value (e-node1)))

(assert! '(frame a-node7 upper-sgitch :value a06))

(assort! _(frame a-node7 lover-switches :value

(fO0 fO1 _02 f03 f04 lOS f06 f07 fOB)))

(assert! '(frame a-node7 upper-sensor :value amS))

(assert! '(frame a-node7 lover-sensors :value (fmO)))

(assert! '(frame a-node7 upper-node :value a-node2))

(assert! '(frame a-node7 lover-nodes :value (f-node1)))

(assert! '(frame a-node8 upper-svttch :value a07))

(assert! _(frane a-node8 loser-stitches :value

(g00 g01 _2 g0S g04 g06 g0e g07 gOe)))

(assert! _(frame a-node8 upper-sensor :value am7))

(assort! J(frame a-node8 lover-sensors :value (gmO)))

(assert! P(frame a-node8 upper-node :value a-node2))

(assort! P(frame a-node8 lover-nodes :value (g-nodol)))

(assert! '(frame h-nodeS uppor-svitch :value h02))

%_J

SSM/PMAD Technical Reference
III-82

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! '(frane h-node3 lower-swi£ches :value

(b14 his hi6 bit b18 bl9 b20 b21 b22)))

(assert! '(frame h-node3 upper-sensor :value lm2))

(assert! '(frame h-node3 lower-sensors :value (bnl)))

(assert! '(frane h-node3 upper-node :value h-node2))

(assert! '(fraue h-node3 lover-nodes :value .(b-node2)))

(assert! '(frame h-node4 upper-swi$ch :value h03))

(assert! '(frame h-node4 lower-switches :value

(c14 c15 c16 c17 cl8 c19 c20 c21 c22)))

(assert! '(frame h-node4 upper-sensor :value]m3))

(assert! '(frame h-node4 lower-sensors :value (cma!)))

(assert! '(frame h-node4 upper-node :value h-node2))

(assert! '(frame h-node4 loser-nodes :value (c-node2)))

(assert! '(frame h-nodeS upper-switch :value h04))

(assert! '(frame h-nodeS loser-switches :value

(d14 dis d16 d17 dl8 d19 d20 d21 d22)))

(assert! *(frame h-nodeS upper-sensor :value hn4))

(assert! '(frame h-nodeS loser-sensors :value (dml)))

(assert! '(frame h-nodeS upper-node :value h-node2))

(assert! '(frame h-nodeS loser-nodes :value (d-node2)))

(assert! '(frame h-node6 upper-switch :value hOS))
(assert! '(frame h-node6 lower-switches :value

(el4 elS e16 el7 e18 el9 e20 e21 e22)))

(assert! '(frame h-node6 upper-sensor :value h_))

(assert! '(frame h-nodeS louer-sensors :value (enl)))

(assert! '(frame h-node6 upper-node :value h-node2))

(assert! '(frame h-node6 ioger-nodes :value (e-node2)))

(assert! '(frame h-node7 upper-switch :value hOS))

(assert! '(frame h-node7 loser-switches :value

(f14 f15 _16 f17 f18 f19 f20 f21 f22)))

(assert! '(frame h-node7 upper-sensor :value haS))
(assert! '(frame h-node7 loser-sensors :value (fal)))

(assert! '(frame h-node7 upper-node :value h-node2))

(assert! '(frame h-node7 lower-nodes :value (f-node2)))

(assert! '(frame h-node8 upper-switch :value h07))

(assert! '(frame h-node8 lower-sgStches :value

(g14 g15 g16 g17 g18 gl9 g20 g21 g22)))

(assert! '(frame h-nodeS upper-sensor :value haT))

(assert! '(frame h-node8 lover-sensors :value (_1)))

(assert! '(frame h-nodeS upper-node :value h-node2))

(assert! '(frame h-node8 lower-nodes :value (g-node2)))

(assert! '(frame b-nodel upper-switch :value a02))

SSM/PMAD Technical Reference
III-83

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert: '(franc b-nodel lower-switches :value

(bOO bO1 b02 b03 b04 b05 b06 bO7 b08)))

(assert! '(frane b-nodel upper-sensor :value I_0))

(assert! '(frees b-node1 upper-node :value a-node3))

(assert! '(frmae b-node2 upper-switch :value h02))

(assert! '(fraae b-node2 lower-switches :value

(b14 b16 b16 bl7 b18 bl9 b20 b21 b22)))

(assert! '(frmae b-node2 upper-sensor :value bat))
(assert! '(frmae b-node2 upper-node :value h-nodeS))

(assert! '(franc c-node! upper-switch :value sO3))

(assert! '(frame c-nodei lower-switches :value

(cOO cOlcb02 c03 c04 cOS c06 c07 cOS)))

(assert! '(frane c-node1 upper-sensor :value cmO))

(assert! '(fraBe c-nodel upper-node :value a-node4))

(assert! '(frame c-node2 upper-switch :value h03))

(assert! '(Erase c-node2 lower-switches :value

(c14 clB ci6 cl7 c18 c19 c20 c21 c22)))

(assert! '(frane c-node2 upper-sensor :value cal))

(assert! '(frane c-node2 upper-node :value h-node4))

(assert! '(frame d-nodel upper-switch :value sO4))

(assert! '(frame d-nodel lower-switches :value

(dO0 dOldb02 dO3 dO4 dOS dO6 dO7 dO8)))

(assert! '(Erase d-node1 upper-sensor :value dmO))

(assert! '(frame d-node1 upper-node :value a-nodeS))

(assert! '(frame d-node2 upper-switch :value h04))

(assert! '(frame d-node2 lower-switches :value

(d14 dis dle dl7 di8 dl9 d20 d2| d22)))

(assert! '(frame d-node2 upper-sensor :value dul))

(assert! '(frame d-node2 upper-node :value h-nodeS))

(assert! '(frame e-nodel upper-switch :value nO8))

(assort! '(frame o-nodel lower-switches :value

(sO0 eOleb02 003 004 sO5 006 007 008)))

(assert! '(fr_ne e-node1 upper-sensor :value mtO))

(assert! '(frame e-nodel upper-node :value a-node6))

(assert! '(frame e-node2 upper-swltch :value hO5))

(assert! '(frame e-node2 lower-switches :value

(el4 el5 el6 el7 el8 el9 e20 e21 e22)))

(assert! '(frame e-node2 upper-sensor :value aml))

(assert! '(frsae e-node2 upper-node :value h-node6))

(assert! '(frmae f-nodel upper-switch :value sO6))

%./

L= : T : ii i ,if: iiii iiiiiii

SSM/PMAD Technical Reference
III-8,1

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

x,._./

(assert! '(frale f-nodel lower-s_itches :value

(fO0 fOlfb02 f03 f04 f05 f06 f07 f08)))

(assert! '(frame f-nodel upper-sensor :value lEO))

(assert! '(frame f-node1 upper-node :value a-node7))

(assert! '(frame f-node2 upper-swi¢ch :value h06))

(assert! '(frame f-node2 lower-swi¢ches :value

(f14 f15 f16 f17 f18 119 f20 f21 f22)))

(assert! '(frame f-node2 upper-sensor :value fml))

(assert! '(frame f-node2 upper-node :value h-node7))

(assert! '(frame g-node1 upper-switch :value nO7))

(assert! _(frame g-node1 loser-switches :value

(goo golgbo2 gO3 go4 go5 go6 gO7 gO8)))
(assert! '(frame g-nodel upper-sensor :value _0))

(assert! '(frame g-nodel upper-node :value a-node8))

(assert! '(frame g-node2 upper-switch :value h07))

(assert! '(frame g-node2 loger-switches :value

(g14 g15 g16 g17 g18 g19 g20 g21 g22)))

(assert! '(frame g-node2 upper-sensor :value _1))

(assert! J(frame g-node2 upper-node :value h-node8))

(dolis¢ (swi¢ch ,(bOO b01 b02 b03 b04 bOB b06 b07 bOB))

(asser¢! '(frame ,swi¢ch upper-node :value a-node3)))

(dolist (switch '(b14 bl5 b16 b17 b18 b19 b20 b21 b22))

(asser¢! '(frame .switch upper-node :value h-node3)))

(dolis¢ (switch '(cOO cO1 c02 c03 c04 cOB c06 c07 c08))

(asser¢! '(frame ,switch upper-node :value a-node4)))

(dolis¢ (switch '(c14 cl5 c16 c17 c18 c19 c20 c21 c22))

(assert! '(frame ,swi¢ch upper-node :value h-node4)))

(dolist (switch '(dO0 dOl dO2 dO3 dO4 dO5 dO6 dOT dO8))

(assert! '(frame ,swi¢ch upper-node :value a-nodeS)))

(dolist (switch '(d14 dl5 d16 d17 d18 d19 d20 d21 d22))

(assert! '(frame ,switch upper-node :value h-node5)))

(dolist (swi¢ch '(sO0 sOl e02 sO3 sO4 sOB sO6 sO7 sO8))

(assert! '(frame ,swi¢ch upper-node :value a-node6)))

(dolis¢ (swi¢ch '(el4 el5 el6 el7 e18 el9 e20 e21 e22))

(assert! '(frame ,switch upper-node :value h-node6)))

(dolie¢ (swi¢ch '(fO0 fO1 f02 f03 f04 fOB f06 f07 f08))

SSM/PMAD Technical Reference
III-85

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(usert ! ' (fraue ,switch upper-node

(dolist (switch '(f14 f16 f16 f17 f18

(usert! '(frame ,hitch upper-node

(dolist (switch '(gO0 gO1 gO2 gO3 gO4

(assert! ' (frame ,switch upper-node

(dolist (switch '(g14 g15 g16 g17 g18

(assert! ' (frame ,switch upper-node

(assert !

(assert !

(assert !

' (frame amO lower-node :value

' (fraue an1 upper-node :value

' (frame am1 lower-node :value

(assort !

(assert !

(assert !

'(frame hmO lower-node :value

'(frame Iml upper-node :value

'(frame lual lower-node :value

(dolist (sensor ' (an2 am3 an4 an5 am6

(assert ! ' (frame ,sensor upper-node

(dolist (sensor ' (hn2 hn3 hn4 hm5 hm6

(assert ! ' (frame ,sensor upper-node

(assert! '(frame a_ lower-node :value

(assert! '(frame a_ lower-node :value

(assert ! '(frame aR4 lower-node :value

(assert ! '(frame al6 lower-node :value

(assert ! ' (frame am6 lower-node :value

(assert ! ' (frame am7 lower-node :value

(assert! '(frame h_ lower-node :value

(assert ! ' (frame hn3 lower-node :value

(assert ! ' (frame hn4 lower-node :value

(assert ! ' (frano h_ lower-node :value

(assort ! ' (frame hn6 lower-node :value

(assert! ' (franc hut lower-node :value

(assert ! ' (franc bmO upper-node :value

(assert! '(frame bnO lower-node :value

(assert! '(frame t_nl upper-node :value

(assert ! '(frame bin1 lower-node :value

(assert. j '(frame cnO upper-node :value

(assert ! ' (frame cnO lower-node :value

(assert! '(frame cal upper-node :value

:value a-node?)))

f19 f20 f21 f22))

: value h-node7)))

@s goe go_ gee))
: value a-nodeS)))

g19 g20 g21 g22))
: value h-node8)))

a-nodel))

a-nodel))

a-node2))

h-nodel))

h-node1))

h-node2))

am?))
:value a-node2)))

huT))
:value h-node2)))

a-node3))

a-node4))

a-node6))

a-node6))

a-nodeT))

a-nodeS))

h-nodeS))

h-node4))

h-nodeS))

h-node6))

h-node7))

h-nodeS))

a-nodeS))

b-..nodel))

h-nodeS))

b-node2))

a-node4))
c-node1))
h-node4))

SSM/PMAD Technical Reference
IH-86

Appendix IH

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

"-_.j (assert! '(frame cal lower-node :value c-node2))

(assert! '(frame d_O upper-node :value a-nodeS))

(assert! '(frame dmO lower-node :value d-node1))

(assert! '(fraae dni upper-node :value h-nodeS))

(assert! '(frame dml lower-node :value d-node2))

(assez_! '(frame emO upper-node :value a-node6))

(assert! '(frame emO lower-node :value e-nodeJ))

(assert! J(frame eml upper-node :value h-node6))

(assert! '(frame emJ lover-node :value e-node2))

(assert! '(frame fmO upper-node :value a-node7))

(assert! '(frame fnO lower-node :value f-nodel))

(assert! '(frame fmJ upper-node :value h-node7))

(assert! J(frane fml loeer-node :value f-node2))

(assert! '(frame gaO upper-node :value a-node8))

(assert! '(frane gaO lower-node :value g-nodel))

(assert! '(frame gml upper-node :value h-node8))

(assert! '(frane g_l lower-node :value g-node2))

;;; LLPs

(dolist (lip '(llp-a llp-b 11p-¢ llp-d llp-e llp-f llp-g lip-h))

(fcreate-instance 'llp lip)

(assert! '(fraze ,lip name :value ,lip)))

(assert! '(frame llp-a contained-switches-bus-a :value

(nO1 nO2 nO3 nO4 nO5 nO6 nO7)))

(assert! '(frame llp-a contained-switches-bue-b :value ()))

(assert! '(frane llp-a contained-sensors :value

(a_O aml am2 arts an4an5 an6 an7)))

(assert! '(frane llp-h contained-ewitches-bue-a :value ()))

(assert! '(frane llp-h contained-switches-bus-b :value

(hOl h02 h03 h04 hO5 hO6 hOT)))

(assert! '(fraae ilp-h contained-sensors :value

(hmO hnl ha2 h_3hm4hn5 hn6hn7)))

(assert! '(frame llp-b contained-sgitches-bus-a :value

(bOO bOl b02 bO3 bO4bOB bO6b07 bOB)))

(assert! '(frane llp-b contained-switches-bus-b :value

(b14 bib b16 b17 b18 b19 b20 b21 b22)))

(assert! '(frane llp-b contained-sensors :value (baO bal)))

(assert! _(frane 1lp-¢ contalned-ewiCches-bus-a :value

(cOO cOl c02 cOS c04 c05 cOS cO7 c08)))

SSM/PMAD Technical Reference
III-87

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

(assert

(c14

(assert

! '(frame llp-c contained-seitches-bus-b :value

c18 c16 c17 c18 c19 c20 c21 c22)))

! '(frame llp-c contained-sensors :value (cmO cal)))

(assert

(dO0

(assert
(d14

(assert

! '(frame llp-d contained-switches-bus-a :value

dO1 dO2 dO3 dO4 dOS dO6 dO7 dO8)))

! '(frame llp-d contained-switches-bus-b :value

di$ d16 d17 d18 d19 d20 d21 d22)))

! '(frame llp-d contalned-sensors :value (daO dal)))

(assert

(eO0

(assert
(e14

(assert

! '(frame llp-e contained-suitches-bus-a :value
e01 e02 sO3 e04 e08 e06 e07 e08)))

! '(frame llp-e contalned-switchee-bus-b :value
e18 e16 el7 e18 el9 e20 e21 e22)))

! '(frame llp-e contained-sensors :value (eaO eal)))

(assort

(f00
(assert

(f14

(assert

! '(frame llp-f contained-switches-bus-a :value

_01 f02 _03 f04 f08 f06 f07 f08)))

! '(frame llp-f contained-switches-bus-b :value

f18 f16 f17 fl8 f19 f20 f21 f22)))

! '(frame llp-f contained-sensors :value (fmO fml)))

(assert

(gOO
(assert

(g14

(assert

! '(fraae llp-g contained-switches-bus-a :value

gO1 802 g03 gO4 gO8 gO6 gO7 gO8)))

! '(frame llp- 8 contained-seitches-bus-b :value

gl8 g18 g17 gl8 g19 820 g21 g22)))

! '(frame llp-g contained-sensors :value (g0 _1)))

;;; cables

(fcreate-instance 'cable 'lip-a-cable-O)

(assert! '(frame llp-a-cable-O nase :value lip-a-cable-O))

(assert! '(frmse llp-a-cable-O in :value source-a))

(assert! '(frame llp-a-cable-O out :value (aOl)))

(fcreate-instance 'cable 'll]>-a-cable-1)

(anert! '(frame lIp-a-cable-I name :value llp-a-cable-l))

(assert! '(frame llp-a-cable-1 in :value aOl))

(assert! '(frame llp-a-cable-I out :value (a02 aO3 a04 a05 a06 a07)))

(fcreate-instance 'cable 'lip-h-cable-O)

(assert! '(frame llp-h-cable-O name :value lip-h-cable-O))

(assert! '(frame llp-h-cable-O in :value source-b))

(assert! '(frame llp-h-cable-O ou_ :value (hO1)))

(fcreate-instance 'cable 'lip-h-cable-l)

(assert ! ' (frame llp-h-cable-I nane :value llp-h-cable-1))

(assert! '(frmse llp-h-cable-1 in :value hOl))

SSM/PMAD Technical Rderen_-
III-88

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

"__.j (assert! '(frame llp-h-cable-I out :value (h02 h03 h04 h05 h06 hOT)))

(fcreate-instance 'cable 'lip-a-cable-2)

(assert ! ' (frame lip-a-cable-2 name : value lip-a-cable-2))

(assert ! '(frwn llp-a-cable-2 in :value a02))

(assert ! '(frame llp-a-cable-2 out :value

(bOO bOl b02 b03 b04 b05 b06 b07 bO8)))

(fcreate-instance 'cable 'llp-a-cable-3)

(assert ! '(frame lip-a-cable-3 name :value llp-a-cable-3))

(assert! '(frame lip-a-cable-3 in :value a03))

(assert ! '(frame llp-a-cable-3 out :value

(cO0 c01 c02 c03 c04 cOS c06 c07 c08)))

(fcreate-instance 'cable 'llp-a-cable-4)

(assert ! '(frame llp-a-cable-4 name :value llp-a-cable-4))

(assert ! '(frame llp-a-cable-4 in :value a04))

(assert ! '(frame lip-a-cable-4 out :value

(dO0 dOl dO2 dOS dO4 dO5 dO6 dO7 dO8)))

(fcreate-instance 'cable 'lip-a-cable-5)

(assert ! ' (frame lip-a-cable-5 name : value lip-a-cable-5))

(assert! '(frame lip-a-cable-5 in :value a05))

(assert ! ' (frame lip-a-cable-5 out :value
(sO0 sO1 sO2 e03 e04 eO5 e06 e07 sO8)))

(fcreate-instance 'cable 'llp-a-cable-6)

(assert! '(frame lip-a-cable-6 name :value lip-a-cable-6))

(assert! '(frame lip-a-cable-6 in :value a06))

(assert! '(frame lip-a-cable-6 out :value

(fO0 fO1 f02 lOS f04 f05 f06 f07 f08)))

(fcreate-inetance 'cable 'lip-a-cable-7)

(assert! '(frame lip-a-cable-7 name :value llp-a-cable-7))

(assert! '(frame lip-a-cable-7 in :value a07))

(assert! '(frame lip-a-cable-7 out :value

(gOO gO1 gO2 gO3 gO4 gOS gO6 gO7 gOB)))

(fcreate-instance 'cable 'lip-h-cable-2)

(assert! '(frame lip-h-cable-2 name :value lip-h-cable-2))

(assert! '(frame lip-h-cable-2 in :value h02))

(assert! '(frame lip-h-cable-2 out :value

(b14 b15 b16 b17 b18 b19 b20 b21 b22)))

(fcreate-instance 'cable 'lip-h-cable-S)

(assert! '(frame llp-h-cable-S name :value lip-h-cable-3))

(assert! '(frame llp-h-cable-3 in :value h03))

(assert! '(frame llp-h-cable-3 out :value

SSM/PMAD Technical Reference
III-89

Appendix III

SSM/PMAD Technical Refer, ,ce

Interim

Final Report

Volume II

(ci+ ci7cls c2oc21¢22)))

(fcreate-iustance 'cable 'lip-h-cable-4)

(assert! '(frame lip-h-cable-4 name :value lip-h-cable-4))

(assert! '(frame lip-h-cable-4 in :value h04))

(assert! '(frame lip-h-cable-4 out :value

(d14 d15 d16 d17 d18 d19 d20 d21 d22)))

(fcreate-instance 'cable 'llp-h-cable-5)

(assert! '(frame lip-h-cable-5 na_e :value llp-h-cable-5))

(assert! '(frame lip-h-cable-5 in :value h05))

(assert! '(frame lip-h-cable-5 out :value

(el4 e15 e16 el7 e18 e19 e20 e21 e22)))

(fcreate-instance 'cable 'lip-h-cable-6)

(assert! '(frame lip-h-cable-6 name :value lip-h-cable-6))

(assert! '(frale lip-h-cable-6 in :value h06))

(assert! '(frame lip-h-cable-6 out :value

(f14 f15 f16 fl7 fl8 fl9 f20 f21 f22)))

(fcreate-instance 'cable 'lip-h-cable-7)

(assert! '(frale lip-h-cable-7 name :value 11p-h-cable-7))

(assert! '(frame lip-h-cable-7 in :value hOT))

(assert! '(frame lip-h-cable-7 out :value

(g14 gl5 gl6 gl7 gl8 g19 g20 g21 g22)))

(fcreate-instance 'cable 'lip-b-cable-O)

(assert! '(frame llp-b-cable-O name :value lip-b-cable-O))

(assert! _(frame llp-b-cable-O in :value bOO))

(assert! '(frame llp-b-cable-O out :value (load-bOO)))

(fcreate-instance 'cable 'lip-b-cable-i)

(assert! '(frame lip-b-cable-1 hale :value lip-b-cable-I))

(assert! '(frame llp-b-cable-I in :value bOl))

(assert! '(frame llp-b-cable-i out :value (load-bOl)))

(fcreate-instance 'cable 'lip-b-cable-2)

(assert! '(frame lip-b-cable-2 name :value lip-b-cable-2))

(assert! '(frame lip-b-cable-2 in :value b02))

(assert! '(frsae lip-b-cable-2 out :value (load-b02)))

(fcreate-instance 'cable 'llp-_-cable-3)

(anert! '(frame lip-b-cable-3 name :value lip-b-cable-3))

(assort! '(frame llp-b-cable-3 in :valuo b03))

(assert! '(frame lip-b-cable-3 out :value (load-bO3)))

(fcreate-ine_ance 'cable 'lip-b-cable-4)

(aJsert! '(frame llp-b-cable-4naae :value llp-b-cable-4))

SSM/PMAD Technical Reference
III-90

MCR-89-516

July 1990

L

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

x..._J (assert! '(frame llp-b-cable-4 in :value b04))

(assert : '(frame llp-b-cable-4 out :value (load-b04)))

(!create-instance 'cable 'lip-b-cable-5)

(assert! '(frame lip-b-cable-8 name :value lip-b-cable-8))

(assert! '(frame lip-b-cable-8 in :value bOB))

(assert ! ' (frame lip-b-cable-8 out :value (load-be8)))

(!create-instance 'cable 'lll>-b-cable-6)

(assert! '(frame lip-b-cable-6 name :value lip-b-cable-6))

(assert ! '(frame lip-b-cable-6 in :value b06))

(assert ! ' (frame lip-b-cable-6 out :value (load-b06)))

(!create-instance 'cable 'lip-b-cable-7)

(assert! '(frame lip-b-cable-7 name :value llp-b-cable-7))

(assert ! '(frame lip-b-cable-7 in :value b07))

(assert: '(frame lip-b-cable-7 out :value (load-b07)))

(!create-instance 'cable 'lip-b-cable-8)

(assert! '(frame lip-b-cable-8 name :value lip-b-cable-8))

(assert! '(frame lip-b-cable-8 in :value b08))

(assert ! '(frame llp-b-cable-8 out :value (load-bOB)))

(!create-instance 'cable 'lip-b-cable-14)

(assert! ' (frame lip-b-cable-14 name :value lip-b-cable-14))

(assert! '(frame lip-b-cable-14 in :value hi4))

(assert! '(frame lip-b-cable-14 out :value (load-bl4)))

(!create-instance 'cable 'lip-b-cable-18)

(assert ! ' (frame lip-b-cable-18 name :value lip-b-cable-IS))

(assert ! ' (frame lip-b-cable-18 in :value hiS))

(assert! ' (frame lip-b-cable-18 out :value (load-biB)))

(!create-instance 'cable 'lip-b-cable-16)

(assert! '(frame lip-b-cable-16 name :value llF-b-cable-16))

(assert! '(frame lip-b-cable-16 in :value b16))

(assert! '(frame lip-b-cable-16 out :value (load-bl6)))

(fcreate-instance 'cable 'lip-b-cable-17)

(assert! '(frame lip-b-cable-17 name :value llp-b-cable-17))

(assert! '(frame lip-b-cable-17 in :value bl7))

(assert! '(frame lip-b-cable-17 out :value (load-biT)))

(!create-instance 'cable 'llp-b-cable-18)

(assert! '(frame lip-b-cable-18 name :value lip-b-cable-18))

(assert! '(frame lip-b-cable-18 in :value b18))

(assert ! ' (frame llp-b-cable-18 out : value (load-hi8)))

SSM/PMAD Technical Reference
III-91

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II
MCR-89-516

July 1990

(fcreate-instance 'cable 'lip-b-cable-19)

(assert ! ' (frame lip-b-cable-19 name :value lip-b-cable-19))

(assert! '(frame lip-b-cable-19 in :value bl9))

(assert ! ' (frame lip-b-cable-19 out :value (load-b19)))

(fcreate-instance 'cable 'lip-b-cable-20)

(assert! '(frame lip-b-cable-20 name :value lip-b-cable-20))

(assert! '(frame lip-b-cable-20 in :value b20))

(assert ! ' (frame lip-b-cable-20 out :value (load-b20)))

(fcreate-instance 'cable 'lip-b-cable-21)

(assert! '(frame lip-b-cable-21 name :value lip-b-cable-21))

(assert ! '(frame lip-b-cable-21 in :value b21))

(assert ! '(frame lip-b-cable-21 out :value (load-b21)))

(fcreate-instance 'cable 'lip-b-cable-22)

(assert! '(frame lip-b-cable-22 name :value llp-b-cable-22))

(assert! '(frame lip-b-cable-22 in :value b22))

(assert! '(frame lip-b-cable-22 out :value (load-b22)))

(fcreate-instance 'cable 'lip-c-cable-O)

(assert! '(frame llp-c-cable-O name :value lip-c-cable-O))

(assert! '(frame llp-c-cable-O in :value cO0))

(assert! '(frame llp-c-cable-O out :value (load-c00)))

(fcreate-instance 'cable 'lip-c-cable-I)

(assert! '(frame llp-c-cable-I name :value lip-c-cable-I))

(assert! '(frame llp-c-cable-I in :value cOl))

(assert! '(frame lip-c-table-1 out :value (load-cOl)))

(fcreate-instance 'cable 'lip-c-cable-2)

(assert! '(frame lip-c-cable-2 name :value lip-c-cable-2))

(assert! '(frame lip-c-cable-2 in :value c02))

(assert! '(frame lip-c-cable-2 out :value (load-c02)))

(fcreate-instance 'cable 'lip-c-cable-S)

(assert! '(frame llp-c-cable-3 name :value lip-c-cable-S))

(assert! '(frame llp-c-cable-S in :value cOS))

(assert! '(frame lip-c-cable-3 out :value (load-c03)))

(fcreate-instance 'cable 'lip-c-cable-4)

(assert! '(frame lip-c-cable-4 name :value lip-c-cable-4))

(assert! '(frame lip-c-cable-4 in :value c04))

(assert! '(frame lip-c-cable-4 out :value (load-c04)))

(fcreate-instance 'cable 'lip-c-cable-5)

(assert! '(frame lip-c-cable-5 name :value lip-c-cable-5))

(assert! '(frame lip-c-cable-5 in :value cOS))

SSM/PMAD Technical Reference
III-92

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

Volume II

MCR-89-516

July 1990

-x...7- (assert! '(frame lip-c-cable-6 out :value (load-c06)))

(fcreate-inetance 'cable 'lip-c-cable-6)

(assert! '(frame lip-c-cable-6 name :value lip-c-cable-6))

(assert! '(frame lip-c-cable-6 in :value c06))

(assert! '(frame llp-c-cable-6 out :value (load-c06)))

(fcreate-lnstance 'cable 'llp-c-cable-7)

(assert! '(frame lip-c-cable-7 name :value lip-c-cable-7))

(assert! '(frame lip-c-cable-7 in :value cO7))

(assert! '(frale lip-c-cable-7 out :value (load-c07)))

(fcreate-instance 'cable 'lip-c-cable-S)

(assert! '(frame lip-c-cable-8 nane :value lip-c-cable-8))

(assert! '(frame llp-c-cable-8 in :value cOS))

(assert! '(frame llp-c-cable-S out :value (load-cOS)))

(fcreate-instance 'cable 'llp-c-cable-14)

(assert! '(frame lip-c-cable-14 name :value lip-c-cable-14))

(assert! '(frame lip-c-cable-14 in :value c14))

(assert! '(frame lip-c-cable-14 out :value (load-c14)))

(fcreate-instance 'cable 'llp-c-cable-lS)

(assert! '(frame llp-c-cable-15 name :value llp-c-cable-15))

(assert! '(frame llp-c-cable-15 in :value ciS))

(assert! '(frame lip-c-cable-iS out :value (load-clS)))

(fcreate-instance 'cable 'llp-c-cable-16)

(assert! '(frame llp-c-cable-16 name :value lll>-c-cable-16))

(assert! '(frame llp-c-cable-I6 in :value ci6))

(assert! '(frame lip-c-cable-16 out :value (load-el6)))

(fcreatelenstance 'cable 'lip-c-cable-17)

(assert! '(frale lip-c-cable-17 name :value lip-c-cable-17))

(assert! '(frame lip-c-cable-17 An :value clT))

(assert! '(frame lip-c-cable-17 out :value (load-cl7)))

(fcreate-instance 'cable 'lip-c-cable-18)

(assert! '(frame lip-c-cable-18 name :value lip-c-cable-IS))

(assert! '(frame lip-c-cable-IS in :value cI8))

(assert! '(frame lip-c-cable-iS out :value (load-cl8)))

(fcreate-instance 'cable 'lip-c-cable-19)

(assert! '(frame lip-c-cable-19 name :value lip-c-cable-19))

(assert! '(frame llp-c-cable-19 An :value c19))

(assert! '(frame 11p-c-cable-19 out :value (load-cig)))

(fcreate-Anstance 'cable 'lip-c-cable-20)

SSM/PMAD Technical Reference
III-93

A_.endix III

SS_vl/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert ! ' (frame lip-c-cable-20 hate :value lip-c-cable-20))

(assert! '(frame lip-c-cable-20 in :value c20))

(assert : ' (fraue lip-c-cable-20 out :value (load-c20)))

(fcreate-instance 'cable 'lip-c-cable-21)

(assert : ' (frame lip-c-cable-21 name :value lip-c-cable-21))

(assert; '(frame lip-c-cable-21 in :value c21))

(assert: '(frame lip-c-cable-21 out :value (load-c21)))

(fcreate-instance 'cable 'lip-c-cable-22)

(assert ! ' (frame lip-c-cable-22 name :value lip-c-cable-22))

(assert! '(frame lip-c-cable-22 in :value c22))

(assert: '(frame lip-c-cable-22 out :value (load-c22)))

(fcreate-inetance 'cable 'lip-d-cable-O)

(assort ! ' (frame llp-d-cable-O name :value lip-d-cable-O))

(assert! '(frame llp-d-cable-O in :value dO0))

(assert! '(frame llp-d-cable-O out :value (lead-dO0)))

(fcreate-instance 'cable 'lip-d-cable-I)

(assert ! ' (frame llp-d-cable-i name :value lip-d-cable-l))

(assert! '(frame lip-d-cable-1 in :value dO1))

(assert! ' (frame lip-d-cable-1 out :value (lead-dO1)))

(fcreate-instance 'cable 'lip-d-cable-2)

(assert! '(frame lip-d-cable-2 naae :value ilp-d-cable-2))

(assert! '(frame lip-d-cable-2 in :value dO2))

(assort ! '(frame lip-d-cable-2 out :value (load-d02)))

(fcreate-instance 'cable 'lip-d-cable-3)

(assert, '(frame lip-d-cable-3 name :value lip-d-cable-3))

(assert! '(frame lip-d-cable-3 in :value dO3))

(aseertl '(frame lip-d-cable-3 out :value (lead-dO3)))

(fcreate-inetance 'cable t lip-d-cable-4)

(assert ! ' (frame lip-d-cable-4 name :value lip-d-cable-4))

(assert! '(frame lip-d-cable-4 in :value dO4))

(assert! j (frame lip-d-cable-4 out :value (load-d04)))

(fcreate-instance 'cable 'lip-d-cable-E)

(assert ! ' (frame llp-d-cable-S name :value lip-d-cable-E))

(assert! '(fraae llp-d-cable-5 in :value dOE))

(assert ! ' (frame lip-d-cable-5 out :value (load-dOE)))

(fcroate-instance ' cable 'lip-d-cable-6)

(assort ! ' (frame lip-d-cable-6 nmme :value lip-d-cable-6))

(assert ! ' (frame lip-d-cable-6 in : value dO6))

(assert ! ' (frame lip-d-cable-6 out :value (lead-dO6)))

11111u I IlL

SSM/PMAD Technical Reference
III-94

Appendix !II

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(fcreate-instauce 'cable 'lip-d-cable-7)

(assert: '(frame lip-d-cable-7 name :value lip-d-cable-7))

(assert ! '(frame llp-d-cable-7 in :value dO7))

(assert ! '(frame llp-d-cable-7 out :value (load-dO7)))

(fcreate-instance 'cable 'llp-d-cable-8)

(assert ! '(frame lip-d-cable-8 name :value lip-d-cable-8))

(assert: '(frame lip-d-cable-8 in :value 408))

(assert ! '(frame llp-d-cable-8 out :value (load-dOS)))

(fcreate-instance 'cable 'llp-d-cable-14)

(assert g '(frame lip-d-cable-14 name :value lll>-d-cable-14))

(assert! '(frame lip-d-cable-14 in :value 414))

(assert! '(frame lip-d-cable-14 out :value (load-all4)))

(fcreate-instance 'cable 'llp-d-cable-15)

(assert ! ' (frame lip-d-cable-16 name :value llp-d-cable-15))

(assert ! '(frame lip-d-cable-18 in :value d15))

(assert! '(frame 11p-d-cable-15 out :value (load-dlS)))

(fcreate-instance 'cable 'lip-d-cable-16)

(assert! '(frame lip-d-cable-16 name :value lip-d-cable-16))

(assert! '(frame lip-d-cable-16 in :value 416))

(assert! '(frame lip-d-cable-16 out :value (load-dl6)))

(fcreate-instance 'cable 'lip-d-cable-17)

(assert! '(frame lip-d-cable-17 name :value lip-d-cable-17))

(assert! '(frame lip-d-cable-17 in :value dl7))

(assert! '(frame lip-d-cable-17 out :value (load-dlT)))

(fcreate-inetance 'cable 'lip-d-cable-18)

(assert! '(frame lip-d-cable-J8 name :value lip-d-cable-18))

(assert! '(frame lip-d-cable-18 in :value dl8))

(assert! '(frame llp-d-cable-18 out :value (load-diS)))

(fcreate-instance 'cable 'lip-d-cable-19)

(assert! '(frame lip-d-cable-19 name :value lip-d-cable-19))

(assert! '(frame lip-d-cable-19 in :value dlg))

(assert! '(frame lip-d-cable-19 out :value (load-dl9)))

(fcreate-instance 'cable 'llp-d-cable-20)

(assert! '(frame lip-d-cable-20 name :value lip-d-cable-20))

(assert! '(frame lip-d-cable-20 in:value d20))

(assert! '(frame 11p-d-cable-20 out :value (load-d20)))

(fcreate-instance 'cable 'lip-d-cable-21)

(assert! '(frame lip-d-cable-21 name :value lip-d-cable-21))

SSM/PMAD Technical Reference
III-95

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert ! '(frame lip-d-cable-21 in :value d21))

(assert! '(frame llp-d-cable-21 out :value (load-d21)))

(fcreate-instance 'cable 'lip-d-cable-22)

(assert ! '(frame lip-d-cable-22 name :value lip-d-cable-22))

(assert! '(frame llp-d-cable-22 in :value d22))

(assert ! '(frame llp-d-cable-22 out :value (load-d22)))

(fcreate-instance 'cable 'llp-e-cable-O)

(assert g '(frame llp-e-cable-O name :value lip-e-cable-O))

(assert ! '(frame llp-e-cable-O in :value cO0))

(assert! '(frame llp-e-cable-O out :value (load-eO0)))

(fcreate-instance 'cable 'lll)-e-cable-l)

(assert' '(frame llp-e-cable-I name :value llp-e-cable-l))

(assert! '(frame llp-e-cable-i in :value eOl))

(assert! '(frame llp-e-cable-I out :value (load-eOl)))

(fcreate-instance 'cable 'llp-e-cable-2)

(assert ! ' (frame lip-e-cable-2 name :value llp-e-cable-2))

(assert! '(frame llp-e-cable-2 in :value e02))

(assert ! '(frame lip-e-cable-2 out :value (load-e02)))

(fcreate-instance 'cable 'lil)-e-cable-3)

(assert! '(frame llp-e-cable-3 name :value llp-e-cable-3))

(assert! '(frame llp-e-cable-3 in :value eO3))

(assert! '(frame llp-e-cable-3 out :value (load-eO3)))

(fcreate-instance 'cable 'lip-e-cable-4)

(assert ! ' (frame lip-e-cable-4 name :value lip-e-cable-4))

(assert! '(frame lip-e-cable-4 in :value e04))

(assert ! ' (frame lip-e-cable-4 out :value (load-e04)))

(fcreate-instance 'cable 'llp-e-cable-5)

(assert ! '(frame lip-e-cable-5 naee :value lip-e-cable-5))

(assert! '(frame llp-e-cable-8 in :value e05))

(assert! '(frame llp-e-cable-5 out :value (load-eO5)))

(fcreate-instance 'cable 'llp-e-cable-6)

(a=sert! '(frame llp-e-cable-6 name :value lip-e-cable-6))

(assert! '(frame llp-e-cable-6 in :value e06))

(assert! '(frame llp-e-cable-6 out :value (load-e06)))

(fcreate-instance 'cable 'llp-e-cable-7)

(assert ! '(frame lip-e-cable-7 name :value lip-e-cable-7))

(assert! '(frame lip-e-cable-7 in :value e07))

(assert! '(frame lip-e-cable-7 out :value (load-e07)))

V

%./

SSM/PMAD Technical Reference
III-96

Interim

Appendix eli Final Report

SSM/PMAD Technical Reference Volume el

MCR-89-516

July 1990

(fcreate-instance 'cable 'lip-e-cable-8)

(assert ! ' (frame lip-e-cable-8 name :value lip-e-cable-8))

(assert! ' (frame lip-e-cable-8 in :value e08))

(assert! ' (frame lip-e-cable-8 out :value (load-e08)))

(fcreate-instance 'cable 'llp-e-cable-14)

(assert! '(frame lip-e-cable-14 name :value lip-e-cable-14))

(assert! '(frame lip-e-cable-14 in :value e14))

(assert! '(frame lip-e-cable-14 out :value (load-el4)))

(fcreate-instance 'cable 'llp-e-cable-15)

(assert ! '(frame lip-e-cable-15 name :value lip-e-cable-15))

(assert! '(frame lip-e-cable-15 in :value elS))

(assert! P(frame lip-e-cable-15 out :value (load-elS)))

(fcreate-instance 'cable 'lip-e-cable-16)

(assert! '(frame lip-e-cable-16 name :value lip-e-cable-16))

(assert! '(frame lip-e-cable-16 in :value el6))

(assert ! ' (frame lip-e-cable-16 out :value (load-el6)))

(fcreate-instance 'cable 'llp-e-cable-17)

(assert! '(frame llp-e-cable-l? name :value llp-e-cable-17))

(assert! '(frame lip-e-cable-17 in :value e17))

(assert ! ' (frame llp-e-cable-17 out :value (load-elT)))

(fcreate-instance 'cable 'lip-e-cable-18)

(assert! ' (frame lip-e-cable-18 name :value lip-e-cable-18))

(assert! '(frame lip-e-cable-18 in :value e18))

(assert ! '(frame llp-e-cable-18 out :value (load-el8)))

(fcreate-instance 'cable 'lip-e-cable-19)

(assert ! ' (frame lip-e-cable-19 name :value lip-e-cable-19))

(assert! '(frame llp-e-cable-19 in :value e19))

(assert ! '(frame lip-e-cable-19 out :value (load-el9)))

(fcreate-instance 'cable 'lip-e-cable-20)

(assert! '(frame llp-e-cable-20 name :value lip-e-cable-20))

(assert! '(frame llp-e-cable-20 in :value e20))

(assert! '(frame lip-e-cable-20 out :value (load-e20)))

(fcreate-instance 'cable 'lip-e-cable-21)

(assert! '(frame llp-e-cable-2! name :value lip-e-cable-21))

(assert! '(frame llp-e-cable-21 in :value e21))

(assert! '(frame llp-e-cable-21 out :value (load-e21)))

(fcreate-instance 'cable 'llp-e-cable-22)

(assert! '(frame lip-e-cable-22 name :value lip-e-cable-22))

(assert! '(frame lip-e-cable-22 in :value e22))

SSM/PMAD Technical Reference
III-97

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(anert ! ' (frame lip-e-cable-22 out :value (load-e22)))

(fcreate-instance 'cable 'lll>-f-cable-O)

(assert! '(frame llp-f-cable-O name :value lip-f-cable-O))

(assert! '(frame llp-f-cable-O in :value fO0))

(assort! '(frame llp-f-cable-O out :value (load-fO0)))

(fcreate-instance 'cable 'lip-f-cable-l)

(assert! '(frame 11p-f-cable-1 name :value lip-f-cable-I))

(assert! '(frame llp-f-cable-I in :value fOl))

(assert! '(frame llp-f-cable-I out :value (load-fOl)))

(fcreate-instance 'cable 'lll>-f-cable-2)

(assert! '(frame lip-f-cable-2 name :value lip-f-cable-2))

(assert! '(frame llp-f-cable-2 in :value f02))

(assert! '(frame llp-f-cable-2 out :value (load-f02)))

(fcreate-instance 'cable 'lip-f-cable-3)

(assert ! '(frame lip-f-cable-3 name :value lip-f-cable-3))

(assert! '(frame lip-f-cable-3 in :value f03))

(assert! '(frame lip-f-cable-3 out :value (load-f03)))

(fcreate-instance 'cable 'lip-f-cable-4)

(assert ! ' (frame lip-f-cable-4 name :value lip-f-cable-4))

(assert! '(frame lip-f-cable-4 in :value f04))

(assert ! '(frame lip-f-cable-4 out :value (load-f04)))

(fcreate-inetance 'cable 'lip-f-cable-8)

(assert ! ' (frame lip-f-cable-5 name :value lip-f-cable-5))

(assert! '(frame llp-f-cable-5 in :value f05))

(assert! '(frame llp-f-cable-5 out :value (load-fOB)))

(fcreate-instance 'cable 'lip-f-cable-6)

(assert ! ' (frame lip-f-cable-6 hale :value lip-f-cable-6))

(assert! '(frame lip-f-cable-6 in :value :[06))

(assert ! '(frame lip-f-cable-6 out :value (load-f06)))

(fcreate-inetance 'cable 'lip-f-cable-7)

(assert ! ' (frame lip-f-cable-7 name :value lip-f-cable-7))

(assert! '(frame lip-f-cable-7 in :value f07))

(assert ! ' (frame lip-f-cable-7 out :value (load-f07)))

(fcreate-instance 'cable 'lip-f-cable-8)

(assert! '(frame lip-f-cable-8 name :value lip-f-cable-8))

(assert! '(frame lip-f-cable-8 in :value fOB))

(assert ! ' (frame lip-f-cable-8 out :value (load-fOe)))

(fcreate-instance 'cable 'lip-f-cable-14)

V

SSM/PMAD Technical Reference-
III-98

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

"%

- ___.- (assert! ' (frame lip-f-cable-14 name :value lip-f-cable-14))

(assert! '(frame lip-f-cable-14 in :value f14))

(assert ! ' (frame lip-f-cable-14 out :value (load-fl4)))

(fcreate-instance 'cable 'lip-f-cable-15)

(assert! ' (fraue lip-f-cable-18 name :value lip-f-cable-15))

(assert! ' (frame lip-f-cable-18 in :value fiB))

(assert! '(frome lip-f-cable-15 out :value (load-f15)))

(forests-instance 'cable 'lip-f-cable-16)

(assert! '(frame lip-f-cable-IS name :value lip-f-cable-J6))

(assert! '(frame llp-f-cable-16 in :value f16))

(assert ! ' (frame lip-f-cable-16 out :value (load-f!6)))

(fcreate-instance 'cable 'lip-f-cable-17)

(assert! '(frame lip-f-cable-17 name :value lip-f-cable-17))

(assert ! ' (frame lip-f-cable-17 in :value flT))

(assert ! '(frame llp-f-cable-17 out :value (load-flT)))

(fcreate-instance 'cable 'lip-f-cable-J8)

(assert ! '(frame lip-f-cable-18 name :value lip-f-cable-18))

(assert! '(frame llp-f-cable-18 in :value f18))

(assert! '(frame llp-f-cable-18 out :value (load-f!8)))

(fcreate-instance 'cable 'lip-f-cable-19)

(assert ! ' (frame lip-f-cable-19 name :value lip-f-cable-19))

(assert ! '(frame llp-f-cable-19 in :value f19))

(assert ! '(frame llp-f-cable-19 out :value (load-flg)))

(forests-instance _cable 'lip-f-cable-20)

(assert! '(frame lip-f-cable-20 name :value lip-f-cable-20))

(assert! ' (frame lip-f-cable-20 in :value f20))

(assert ! _(frame lip-f-cable-20 out :value (load-f20)))

(fcreate-instance 'cable 'lip-f-cable-21)

(assert! '(frame lip-f-cable-21 name :value lip-f-cable-21))

(assert! '(frame llp-f-cable-21 in :value f21))

(assert! '(frame lip-f-cable-21 out :value (load-f21)))

(fcreate-instance 'cable 'lip-f-cable-22)

(assert! '(frame 11p-f-cable-22 name :value llp-f-cable-22))

(assert! '(frame lip-f-cable-22 in :value f22))

(assert! '(frame lip-f-cable-22 out :value (load-f22)))

(fcreate-instance 'cable 'lip-g-cable-O)

(assert ! ' (frame 11p-g-cable-O aims :value lip-g-cable-O))

(assert! '(frame lIp-g-cable-O in :value gO0))

(assert ! ' (frame llp-g-cable-O out :value (load-g00)))

SSM/PMAD Technical Reference
III-99

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(fcreate-instance 'cable 'lip-g-cable-l)

(assert! '(frame llp-g-cable-i name :value llp-g-cable-l))

(assert! '(frame llp-g-cable-I in :value gOl))

(assert ! ' (frame lip-g-cable-1 out :value (load-gO1)))

(f create-instance 'cable 'lip-g-cable-2)

(assert' '(frame lip-g-cable-2 name :value llp-g-cable-2))

(assert! '(frame llp-g-cable-2 in :value gO2))

(assert ! '(frame lip-g-cable-2 out :value (load-g02)))

(fcreate-instance 'cable 'lip-g-cable-S)

(assert ! ' (frame llp-g-cable-3 name :value lip-g-cable-S))

(assert! '(frame llp-g-cable-3 in :value gO3))

(assert ! ' (frame llp-g-cable-3 out :value (load-gO3)))

(fcreate-instance 'cable 'lip-g-cable-4)

(assert ! ' (frame llp-g-cable-4 name :value llp-g-cable-4))

(assert ! ' (frame lip-g-cable-4 in :value gO4))

(assert ! ' (frame lip-g-cable-4 out :value (load-g04)))

(fcreate-instance 'cable 'lip-g-cable-8)

(assert! '(frame lip-g-cable-5 name :value lip-g-cable-8))

(assert! '(frame llp-g-cable-8 in :value gO8))

(assert! '(frame llp-g-cable-5 out :value (load-gOB)))

(fcreate-instance 'cable 'lip-g-cable-6)

(assert! '(frame lip-g-cable-6 name :value llp-g-cable-6))

(assert! '(frame lip-g-cable-6 in :value gO6))

(assert! '(frame lip-g-cable-6 out :value (load-g06)))

(fcreate-instance 'cable 'lip-g-cable-7)

(assert! '(frame lip-g-cable-7 hale :value lip-g-cable-7))

(assert! '(frame lip-g-cable-7 in :value 807))

(assert! '(frame lip-g-cable-7 out :value (load-gOT)))

(fcreate-inetance 'cable 'lll>-g-cable-8)

(assert! '(frame lip-g-cable-8 name :value llp-g-cable-8))

(assert! '(frame llp-g-cable-8 in :value gO8))

(assert! '(frame llp-g-cable-8 out :value (load-g08)))

(fcreate-instance 'cable 'lip-g-cable-14)

(assert! '(frame lip-g-cable-14 name :value llp-g-cable-14))

(assert! '(frame llp-g-cable-14 in :value g14))

(assert! '(frame llp-g-cable-14 out :value (load-gl4)))

(fcreate-instance 'cable 'lip-g-cable-15)

(assert! '(frame llp-g-cable-t$ name :value llp-g-cable-tS))

, ,it | i i i

SSM/PMAD Technical Reference
III-100

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(assert! '(frame lip-g-cable-16 in :value g15))

(assert! '(frame llp-g-cable-IS out :value (load-gl6)))

(fcreate-instance)cable 'lip-g-cable-16)

(assert! '(frame lip-g-cable-16 name :value lip-g-cable-16))

(assert !)(frame llp-g-cable-16 in :value g16))

(assert g '(frame llp-g-cable-16 out :value (load-gl6)))

(fcreate-instance 'cable 'lip-g-cable-17)

(assert! '(frame 11p-g-cable-17 name :value lip-g-cable-17))

(assert ! '(frame llp-g-cable-17 in :value g17))

(assert ! '(frame lip-g-cable-17 out :value (load-g17)))

(fcreate-instance 'cable 'lip-g-cable-18)

(assert ! '(frame lip-g-cable-18 name :value lip-g-cable-18))

(assert !)(frame llp-g-cable-18 in :value El8))

(assert ! '(frame llp-g-cable-18 out :value (load-glS)))

(fcreate-instance 'cable 'lip-g-cable-19)

(assert! '(frame lip-g-cable-J9 name :value lip-g-cable-J9))

(assert! ' (frame lip-g-cable-19 in :value gl9))

(assert! ' (frame lip-g-cable-19 out :value (load-g|9)))

(fcreate-instance 'cable 'lip-g-cable-20)

(assert! '(frame lip-g-cable-20 name :value lip-g-cable-20))

(assert! '(frame lip-g-cable-20 in :value g20))

(assert !) (frame lip-g-cable-20 out :value (load-g20)))

(fcreate-instance 'cable 'lip-g-cable-21)

(assert ! ' (frame lip-g-cable-21 name :value lip-g-cable-21))

(assert! ' (frame lip-g-cable-21 in :value g21))

(assert ! ' (frame lip-g-cable-21 out :value (load-g21)))

(fcreate-instance 'cable 'llp-g-cable-22)

(assert! '(frame llp-g-cable-22 name :value llp-g-cable-22))

(assert! '(frame llp-g-cable-22 in :value g22))

(assert! '(frame 11p-g-cable-22 out :value (load-g22)))

;;; loads

(dollar (load '((load-bOO 11p-b-cable-O) (load-bOl lip-b-cable-l)

(load-b02 lip-b-cable-2) (load-b03 llp-b-cable-3)

(load-b04 11p-b-cable-4) (load-b06 llp-b-cable-6)

(load-b06 llp-b-cable-6) (load-hOT llp-b-cable-7)

(load-b08 llp-b-cable-8) (load-b14 llp-b-cable-14)

(load-b18 llp-b-cable-16) (load-b16 llp-b-cable-16)

(Ioad-bl7 llp-b-cable-17) (load-b18 llp-b-cable-18)

(load-bl9 llp-b-cable-19) (load-b20 lip-b-cable-20)

SSM/PMAD Technical Reference
III-101

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(load-b21 llp-b-cable-21) (load-b22 llp-b-cable-22)))

(fcreate-instance 'load (car load))

(assert! '(frame ,(car load) llp :value llp-b))

(assert! '(frame .(car load) cable-in :value ,(cadr load))))

(dolist (load '((load-c00 lip-c-cable-O) (load-cO1 11p-c-cable-I)

(load-c02 llp-c-cable-2) (load-cO3 llp-c-cable-3)

(load-c04 lip-c-cable-4) (load-cOb 11p-c-cable-8)

(load-c06 llp-c-cable-6) (load-cOT 11p-c-cable-7)

(load-cO8 llp-c-cable-8) (load-c!4 lip-c-cable-14)

(load-c18 llp-c-cable-18) (load-c!8 llp-c-cable-16)

(load-el7 llp-c-cable-17) (load-cl8 llp-c-cable-18)

(load-cl9 llp-c-cable-19) (load-c20 llp-c-cable-20)

(load-c21 llp-c-cable-21) (load-c22 llp-c-cable-22)))

(fcreate-ins_ance 'load (car load))

(assert! '(frame ,(car load) llp :value llp-c))

(assert! '(frame ,(car load) cable-in :value ,(cadr load))))

(dolist (load '((load-dO0 llp-d-cable-O)

(load-d02 llp-d-cable-2) (load-d03 llp-d-cable-S)

(load-d04 lip-d-cable-4) (load-dOS 11p-d-cable-5> _ ::

(load-d06 lip-d-cable-6) (load-dOT llp-d-cable-7)

(load-d08 llp-d-cable-8) (ioad-dl4 llp-d-cable-14)

(load-d!8 llp-d-cable-18) (Ioad-dl6 llp-d-cable-16)

(ioad-dl7 llp-d-cable-17) (ioad-di8 llp-d-cable-18):

(load-d!9 lip-d-cable-19) (load-d20 llp-d-cable-20)

(load-dOl lip-d-cable-l)

(load-d21 llp-d-cable-21) (load-d22 lip-d-cable-22)))

(fcreate-instance 'load (car load))

(assert ! ' (frame , (car load) llp :value llp-d))

(assert! '(frame ,(car load) cable-in :value 0(cadr load))))

(dolist (load '((load-eO0 lip-e-cable-O) (load-e01 lip-e-cable-l)

(load-e02 llp-e-cable-2)(Ioad-e03 llp-e-cable-3)

(load-e04

(load-e06

(load-e08

(load-el8

(load-el7

(load-el9

llp-e-cable-4)

llp-e-cable-6)

llp-e-cable-8)

llp-e-cable-18)

llp-e-cable-17)

llp-e-cable-19)

(load-eO5 lip-e-cable-S)

(load-e07 lip-e-cable-7)

(load-el4 llp-e-cable-14)

(load-el6 llp-e-cable-16)

(load-el8 llp-e-cable-18)

(load-e20 1IF-e-cable-20)

(load-e21 lip-e-cable-21) (load-e22 lip-e-cable-22)))

(fcreate-instance 'load (car load))

(assert! '(frame .(car load) llp :value llp-e))

(assert! '(frame ,(car load) cable-in :value ,(cadr load))))

(dolist (load '((load-fO0 lip-f-cable-O) (ioad-fO! llp-f-cable-l)

(load-f02 llp-f-cable-2) (load-f03 llp-f-cable-3)

(load-f04 11p-f-cable-4) (load-fOB llp-f-cable-8)

(load-f06 llp-f-cable-6) (load-f07 llp-f-cable-7)

SSM/PMAD Technical Reference
III-102

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

(load-f08 llp-f-cable-S)(load-fl4 lip-f-cable-14)

(load-fl5 lip-f-cable-15) (load-f!6 lip-f-cable-16)

(load-f17 lip-f-cable-17) (load-fiE lip-f-cable-IS)

(load-f!9 lip-f-cable-19) (load-f20 lip-f-cable-20)

(load-f21 11p-f-cable-21) (load-f22 11p-f-cable-22)))

(fcreate-lnstance 'load (car load))

(assert! '(frame .(car load) llp :value llp-f))

(assert! '(frame .(car load) cable-in :value ,(cadr load))))

(dolist (load '((load-gO0 11p-g-cable-O) (load-gOl lip-g-cable-l)

(load-g02 lip-g-cable-2) (load-E03 llp-g-cable-3)

(load-E04 llp-g-cable-4) (load-gO5 llp-g-cable-8)

(load-g06 lip-g-cable-6) (load-gO7 llp-g-cable-7)

(load-g08 lip-g-cable-8) (load-g!4 llp-g-cable-14)

(load-g15 lip-g-cable-15) (load-g!6 llp-g-cable-16)

(load-g!7 llp-g-cable-17) (load-g!8 llp-g-cable-18)

(load-g!9 lip-g-cable-19) (load-g20 llp-g-cable-20)

(load-E21 11p-g-cable-21) (load-g22 11p-g-cable-22)))

(fcreate-instance 'load (Car load))

(assert! '(frame ,(car load) llp :value llp-g))

(assert! '(frame ,(car load) cable-in :value ,(cad/ load))))

; ; ; sources

(fcreate-instance 'source

(assert ! '(frame source-a

(assert! '(frame source-a

(assert! ' (frame source-a

' source-a)

name :value source-a))

voltage :value 120))

cable-out : value lip-a-cable-I))

(fcreate-instance 'source

(assert! '(frame source-b

(assert! '(frame source-b

(assert! '(frame source-b

'source-b)
name :value source-b))

voltage :value 120))

cable-out :value lip-h-cable-I))

;;; brin E up the user interface

(user::run-frames)

4.3.2 The Hard Fault Expert System

The hard fault expert system for FRAMES is given here. This expert system is organized

as three rule groups as follows:

Multiple Fault Control Rule Group

@@

@Q The Control Rule Group

SSM/PMAD Technical Reference
III-103

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

QQ

OQ

@Q

@Q

QQ

@Q

@@

Q@

Q@

This rule group controls the analysis of syaptem sets by

calling the hazd fault and diagnosis rule groups on syaptoa sets.

Q@

@@

There is a problem in this rule group.

The rules need to run for every symptom set of the symptom set queue.

However, the semantics of THERE EXISTS is to only fire once, as is

the semantics of simple rules. UntLl new and better semantics for

the needed kind of control is defined, we kludge this by resetting

the fired? slot on rules every t_e cluster-symptoms is called.

RULE-GROUP : mr-control

COITItOL : ((start (_-control-rulel))

(mf-control-rulel (mr-control-rule2))

(mr-control-rule2 (mr-control-ruleS _Lf-control-rule4))

(mr-control-ruleS (mf-control-rulel))

(Rf-control-rule4 (mf-control-rulel)))

@Q

@@ This rule watches for symptom sets in the symptom set queue.

@@ This allows new symptom sets to arrive during diagnosis of

@@ existing sy:ptoas sets.
@@

MF-Control-Rulel

THF£E F_ISTS syaptom-set in syaptom-set-queue

< ::>

[¢he-syNptom-sst : symptom-set] >

Q@

Q@ When we have a symptom set we first cluster the symptom sets.

@@ A syaptoa set aay be the result of aultiple independent faults,

@@ hopefully froa different parts of the power system topology.

Clustering the symptoa set will produce one syaptom

set froa each identifiably distinct location in the power system

that is bus-wise independent (trying to recognize separate faults).

Q@

Q@

QQ

Q@

QQ

0@

Q@

H

N

H

This rule calls the hard fault rule group to determine a diagnosis

for each cluster (a syaptoa set) in the-symptoa-sst.

This consists of setting the

sy_ptoa-set, setting aultiple-hazd-fault-analysis flag and

initializing diagnosis-set. The aultiple-hard-fault rule group

is called followed by the af-diagnosis rule group.

MF-Control-Rule2

FOR ALL cluster in power-domain :: cluster-syaptoms (the-symptoa-set)

SSM/PMAD Technical Reference
I!I-104

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

[symptom-set = cluster]

[multiple-hard-fault-enalysis : started]

[diagnosls-set = empty]

[multiple-hard-fault :: execute (multiple-hard-fault)]

[mr-diagnosis :: execute (mr-diagnosis)] >

@@

@@ If there are more symptom sets in the symptom-set-queue

@@ ge need to do the next symptom set.

@@

@0 This is a kludge. We gant to fire this rule every time through.

@Q Normally, simple rules are only fired once (their semantics), to

@@ get them to fire more than once ee eill use a for all.

MF-Control-Rule3

FOR ALL symptom-set in symptos-set-queue

< [lisp :: length (symptom-set-queue) > I]

::>

[po.er-domain :: send-out-of-services]

[symptom-set-queue = symptom-set-queue MIIUS the-symptom-set] >

@%

@Q |o more symptom sets, send an end-contingency too.

@@

MF-Control-Rule4

[lisp :: length (syxptom-set-queue) = !]

::>

[po.er-domain :: send-out-of-services]

[po.er-domaln :: end-contingency]

[symptom-set-queue = empty]

@@

@@ There is no termination condition on this rule group.

This rule group continually runs eatching for symptom sets.
@@

DOlE

Multiple Hard Fault Rule Group

@@

@@ The llard Fault Rule Group for Multiple Faults
QQ

RULE-GROUP : Multiple-Hard-Fault

@0

Q@

SSM/PMAD Technical Reference
III-105

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

C01TltOL : ((,,tar'c (](F-rulel))

(l(F-rulel ()IF-rule2.1 NF-rule2.2)IF-rule2.3 l(F-rule2.4

](F-rule2. S llF-rule3.1)(F-rule3.2 l(F-rule4.1

)(F-rule4.2 l(F-rule4.3)(F-rule4.4 l(F-rule4.5))

(MF-rule3.1 (MF-rule8 l,lF-rule5.1))

(l_-z-_le3.2 00"-_e3.2.1 l(F-z_le3.2.2 !_-_e3.2.3 KF-_le3.2.4

l_'-rtL_e3.2.8 l_'-Z_Lle3.2.6)_'-z-_le3.2.7))

(MF-rmle4.1 (llF-rule5)lF-z_leS. 1))
(NF-rule4.2 (MF-rule5)(F-z_le6.1))

(MP-rmle4.3 (MF-r.le6](F-z_lo6.1))

(NF-rule4.4 (IqF-nLIe5 l(F-z-_e5.1))

(Ml:'-rule4.5 (l_-z'_o5)IF-ruleS.I))

(NF-ruleS. 1 (l(l:'-rule6.1))

(l(F-z-_Le6.1 (llF-r_e6.2)IF-TtL_e6.3))

()_'-rule6.3 ()IF-tiLde6.4)lF-r_e6.5 l(F-x-_e6.6](F-Ttlle6.7

)IF-rill e6.8))

(l_-Tule6.8 (](F-_L_e6.8.1 l(F-ntle6.8.2))

(MF-z_Lle6.8.2 (l_'-ntle6.9))

(MF-z_le6.9 ()[F-z-_e6.10)_-_le6.11))

(](F-_le6.10 (l(F-r_le6. I2 I(F-z_le6.16))

(KF-Z_LTe6.12 (l_-ntle6.13 l_'-rlue6.14)lF-z_Te6.15))

()(F-_e6.16

(MF-_le6.17

(llF-z_le6.18

()(F-z_le6.21

(MF-r_le6.22

(!_'-_11e6.2

(MF-rule6.4

(MF-rule6.5

()(F-rule6.6

(MF-rule6.7

(l(F-z_l e6.8.

(l_-rlL_e6.11

(llF-r,_e6.13

O[F-_Llo6.14

()[F-z-_o6.15

(RF-Tule6.19

(m'-r,n.ee.2o
(l(F'-rule6.23

(l(F-r_le6.24

(l_-rule6.25

(l(F-r_le6.17 l_-z-_le6.22))

(l(F-z_le6.18))

(l_'-rtL_e6.19)(F-z_le6.20)_'-nLle6.21))

(!_-1_11e6.9))

(MF-rule6.23)lF-z_le6.24 l(F-z_le6.25))

(l(F-rule5](F-rule6.1))

(MF-rule5)IF-ruleS. 1))

(l(F'-rule5)(F-r'u/eS. 1))

(llF-z_le5)(F-z_le5.1))

(l(F-z_le5 l(F-z_le5.1))

1 (MF-rule5)IF-ruleS.I))

(l,lF-r,_le5)lF-rele5.1))
(llF-r_le5 ;(F-ruleS. 1))

(;(F-rule5 llF-rule5.1))

()lF-r_le5 l_-zmle5.1))

(i_-rule5 l(l:'-r',Lle6.1))

(l(l:'-rnle5]O"-rule5.1))

(MF-r,_le5 llF-z_leS. 1))

(lO'-rule5 llF-z_Lle5.1))

()IF-rule5)IF-ruleS. 1)))

v

@@

e@ First ee need the top-symptoem of the current symptom-set.

0@ This eill give u_ an initial indication of a multiple fault

(_ situation or no power to bus situation.

MF-rulel

SSM/PMAD Technical Reference
III-106

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report

VolumeII
MCR-89-516

July 1990

::>

[top-symptoms = power-domain :: top-symptoms (symptom-set)]

@@

¢@

¢¢

¢¢

¢¢

0¢

@¢

¢@

©¢

¢¢

¢0

@¢

@¢

@@

@¢

0¢

@@

@¢

¢¢

¢¢

¢¢

@@

00

¢¢

@¢

Ok, things start getting quite a bit more complex here.

The series 2, 3, and 4 rules are all nondeterministic with respect to

each other. Therefore, we need to have nega$ions of each of the

the series _tT to the other series in the rules themselves. This is

nothing new. It is a gotcha if you don't remember these things (like

I didn't - JDR). as of 4/26/90 we are embedding the negations of parts

of the series two rules into the series four rules. Ye don't need

to worry about the series three rules for a while as they depend upon

knowledge of activities at the lower switches. We don't yet have this

knowledge, therefore they will not be activated.

It turns out that only rule 4.5 seems to need modification.

The series 2.x rules deal with an under-voltage fault where there

is not current trip above the highest symptom; that is, the highest

symptom is either a single under voltage or a set of under voltages.

The 2.x rules determine broken input and output cables of switches

as well as possible no power to the bus situations.

All the 2.x rules first make sure that all the other switches on the

same bus that were on also tripped on under voltage and not on any

other fault.

¢¢ May want to rethink these a bit. Switches do not have voltage.
¢¢ Rule 2.5 will not fire.

@¢

@¢

¢¢

0@

¢¢

tQ

¢¢

@¢

@@

Rule 2.1 checks if the top-sensor of the bus (either aaO or haO) is

reading less than nominal voltage. If it is, then we probably don't

have power to the bus.

The rest of the 2.x rules (2.2 2.3 2.4 2.5) are cases

where there does appear to nominal voltage at the top-sensor, and

therefore have to do with cases where there may be broken switches

and faulty sensors.

MF-rule2.1

[lisp :: length (top-symptoms) >= 1]

[FOR ALL symptom in top-symptoms

< [fault of symptom = under-voltage] >]

[THERE EXISTS symptom in top-symptoms

< [voltage of top-sensor of switch of symptom <=

SSM/PMAD Technical Reference
III-107

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

under-voltage-value of switch of synptoa] >]

[THERE EXISTS synptoal in top-synptoas

< [FOR iLL switch1 in siblings of switch of synptonl

WHERE [event of seitchl <> :_k_om_ "1

[comaand of ovant of switch1 • n "i

< [THERE EXISTS synptoe in top-eynptons

< [switch of syapton = switchl] •] •] •]

[diagnosis -- no-power-to-bus]

[multiple-hard-fault-analysis • done]

@@

@0 Rule 2.2 checks if there is nominal voltage at the sensor above one

eQ of the tripped switches. If there is, then either the cable is
@Q broken between that sensor and the switches (for nero than one switch)

@@ or the switch-input of the tripped switches is broken.

@@

l(F-rulo2.2

[lisp :: lenEth (¢op-eynptons) >= I]

[FOR ALL synpton in top-synptonm

< [fault of synpton = under-voltage] •]

[THERE EXISTS synptonl in top-syEptons

< [FOR ALL switchl in siblings of switch of 8ynptonl

WHERE [event of switch1 <> :unknown]

[command of event of switchl = n]

< [THERE EXISTS synpton in top-synptone

< [switch of sywpton = switchl] •] •] •]

[THERE EXISTS symptom in top-synptons

< [voltage of top-sensor of switch of symptom •

under-voltage-value of switch of synpton]

[voltage of sensor-above of switch of synpton •

under-voltage-value of switch of symptom] •]

::>

[diagnosis = broken-cable-between-sensor-above-and-u-v-sgitches]

[nultiple-hard-fault-analysi8 = done]

eO

@@ Rule 2.3 chocks the case where the sensor above the tripped switches

@@ is roadin E lees than noninal voltage and the switch above the

@@ tripped switches can trip on under voltage but is reading a

4_ a noninal voltage. In this case a broken output cable of the

@@ switch above the tripped 8witchos is hypothesized.

ee
IG'-rule2.3

[lisp :: length (top-syaptons) >= 1]

[FOR ALL synptoa in top-syaptoM

< [fault of synpton - under-voltage] •]

[THERE EXISTS synptonl in top-syuptoas

SSM/PMAD Technical Reference
III-108

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

¢@

@@

@@

@©

@Q

@Q

Q@

@Q

@©

< [FOg ALL switchl in siblings of switch of s_tonl
WIlLiE [event of swltch| <> :unknown]

[cow-and of event of switchl = n]

< C THERE EXISTS symptom in top-synptons

< [switch of sy_pton = svitchl] >] >] >]

[THF_E EXISTS symptom in top-symptoms

< [voltage of top-sensor of switch of symptom >

under-voltage-value of switch of symptom]

[voltage of sensor-above of switch of symptom <=

under-voltage-value of switch of symptom

[under-voltage-trippable of switch-above of switch of symptom =

true] > J

.:>

[diagnosis = broke-output-cable-of-switch-above]

[multiple-hard-fault-analysis - done

Rule 2.4 checks that the sensor above the tripped switches is reading

less than nominal voltage and that the switch above the tripped switches

is NOT trippable on under voltage and, at the same t_e, that the

sensor above the switch above the tripped switches IS reading a

nominal voltage. If this is the case we can hypothesize that the

switch above the tripped switches may have a broken input or output

cable or it may simply be busted.

KF-rule2.4

[lisp :: length (top-symptons) >= 1]

[FOR ALL symptom in top-symptoms

< [fault of symptom = under-voltage] >]

[THE_E EXISTS symptonl in top-syaptoms

< [FOR ALL switch1 in siblings of switch of symptom1

YgHERE [event of switchl <> :_ova]

[command of event of sgi$chl = n]

< [THERE EXISTS symptom in top-symptoas

< [switch of sympton = switch1] >] >] >]

[THEKE EXISTS symptom in top-symptoms

< [voltage of top-sensor of switch of symptou >

under-voltage-value of switch of syapton]

[voltage of sensor-above of switch of symptom <=

under-voltage-value of switch of symptom]

[under-voltage-trippable of switch-above of switch of symptom = false]

[voltage of sensor-above of switch-above of switch of symptom >

under-voltage-value of switch of synpton])]

[diagnosis -- broke-input-cable-of-svitch-above]

[nultiple-ha_d-fault-analysis -- done]

;
Q@

SSM/PMAD Technical Reference
III-109

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

¢_ gule 2.5 checks that there is a nominal voltqe read_ at the

@@ sensor above the tripped sgitchos and that the switch above the

Q@ tripped switches can trip on under voltage but $s also reading

@@ a nominal voltage, but the sensor above the switch above is

@@ reading less than nominal voltage. In this case we can hypothesize

@@ that the input cable to the switch above nay be broken as well as

QQ the under voltage sensor of the switch above.

MF-rule2.5

[lisp :: length (top-sywptom$) >= I]

[FOg ALL symptom in top-symptoms

< [fault of symptom = under-voltage] >]

[THERE EXISTS synptoml in top-symptoms

< [FOR iLL switchl in siblLugs of switch of symptom1
WHERE [event of switch1 <> :unknown]

[command of event of sgitchl = n]

< [THERE EIISTS symptom in top-sFmptoms

< [switch of syIptom = switchl] •] •] •]

[THERE EXISTS symptom in top-symptoms

< [voltage of top-sensor of switch of symptom •

under-voltage-value of switch of symptom]

[voltage of sensor-above of switch of symptom <=

under-voltage-value of sgitch of symptom]

[under-voltage-trippable of switch-above of sgttch of symptom = true]

[voltage of switch-above of switch of symptom •

under-voltage-value of switch of my:prom]

[voltage of sensor-above of switch-above of switch of symptom <=

under-voltage-value of switch of sywpton] •]

[diagnosis -

break- _u-cable-above-swit ch-above-and-bad-u-v-s ens or-swtt ch-above]

[multiple-hard-fault-analysis = done]

Q@

@@ The 3.x.x series of rules deal with two special cases.

e@ 3.1 checks that there is more than one top-symptom where all

¢_ the top-symptoms are at the bottom level of switches (risht above

H the loads, and that all the tol>-synptons tripped on either

@e over-current or fast-trip. Finally all the top-symptoms are related

e@ by an activity that is using the switches of the top-symptoms.

@@ 3.2 checks that the set of top-symptoms are not related by the sane

Q@ activity and that the switches are at the bottom level and

(_ that they all tril:_ed on fast-trip.

@@

@@ Pale 3.1, as stated above, checks that the switches of 811 the

/--'M/DP g , ,-m ,SSM Technical Reference
III-110

x.../

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

@@ symptoms are at the bottom level and tripped on either over-current

@@ or fast-trip. The switches of the symptoms are also related by

@@ being used by the same activity.
@@ IF these conditions are satisfied then perhaps the reason this set

@@ of syuptoms occurred is that the activity is behaving badly. To

@% test this the 3.l.x rules gill first flip and then close the sgitches

@@ in an effort to see if there is any repeatability in the symptoms.

@%

MF-rule3. I

[lisp :: length (top-symptoms) > I]

[FOR ALL symptom in top-symptoms

< [s.itches-belou of switch of symptom = empty] >]

[FOR ALL sylptom in top-symptoms

< [fault of symptom = over-current]

OR

[fault of symptom = fast-trip] >]

[THERE EXISTS symptom in top-symptoms

< [FOR ALL symptoml in top-symptoms

< [activity of s.itch of symptom =

activity of s.itch of symptoml] >] >]

.:>

[the-individual-symptoms = top-symptoms]

@ until we actually have activities to look at on the workstation

@ we will treat these as individual cases.

@[switches-to-test = empty]

go

@@

@@

This is where the 3.1.x rules will go

@@

@@ Rule 3.2 checks that all the symptoms are fast-trip and all at the

@@ bottom level. Also all the switches of the symptoms are not related

@@ by being used by the same activity. In this case we consider the

@@ possibility that there was a fault below one of the switches and

@@ the other switches also tripped on fast trip due to energy storage

@@ in their loads.

@@ To test this we flip all the switches and try to get O|E of them

@@ to retrip on fast-trip.

MF-rule3.2

[lisp :: lan_h (top-symptoB) • I]
[FOR ALL symptom in top-s_ptoms

< [switches-below of switch of symptom = empty]

[fault of symptom = fast-trlp] >]

[THERE EXISTS symptom in top-symptoms

< [THERE EXISTS symptom1 in top-symptoms

< [activity of switch of symptom <>

SSM/PMAD Technical Reference
III-111

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

activity of 8gitch of synptoml] >] •]

[switches-to-test = empty]

Q@

(_ Rule 3.2.1 grabs all the egitches that may be tested according

(_ to the perBission-to-test field of the scheduled event for the switch.

@@

)(F-rule3.2.1

::>

[FOR ALL syuptou in top-synptons

WHERE [permission-to-test of event of switch = y]
< [switches-to-test = switches-to-test PLUS switch of synptom] •]

@@

@@ Rule 3.2.2. actually initiates the flipping process if there are

@@ switches to test.

e@

](F-ruleS. 2.2

[lisp :: length (switches-to-test) • 0]
::•

[new-symptoms = poser-domain :: flip-switches (switches-to-test)]

@@

@Q Rule 3.2.3 checks to see if there aren't any switches to test. If there

@Q aren't then we diagnose that situation (basically ee can't determine

Q@ anything and can only notify the user).

@e

](F-rule3.2.3

[lisp :: length (switches°to-test) = 0]

[diagnosis = no-permission-to-test-possible-backrush]

(_ Rule 3.2.4 checks if ge got more than one synptom as a result of

(_ flipping the switches, if so we have a problen. Flippin 8 flips

@@ the switches one at a time individually, there should only be one

e@ synpton as a result of this operation.

e@

MY-rule3.2.4

[lisp :: length (new-synptoms) • I]

[die.lewis = unexpectod-to-aany-retrips-possible-backrueh]

@@

@@ Rulo 3.2.5 checks to see if we didn't get any sympto18 ae a result

@@ of flipp_ag these lgitches. If that is the case we uleo don't

@@ know what the problen is. If there is a short below a switch it ought

SSM/PMAD Technical Reference
III-112

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

@Q to retrip the svitch vhen the switch gets turned on. Could be a

@@ misbehaving load I suppose.

@@ This diagnosis should check if there gore some switches that didnJt

@@ have permission to test. That is, are sgitches-to-test and top-symptoms

QQ of the same length?

Q@

QQ

00

Q@

@Q

Q©

@@

Q@

Q¢

Q¢

@@

NF-rule3.2.5

[lisp :: length (nee-symptoms) = 0]

::>

[diagnosis = no-retrips-on-flips-possible-backrush]

Rule 3.2.6 checks that if ve did get a single nee symptom and

it is also a fast trip and one of the same smirches of the original

top-symptoms, then we can diagnose this situation as a possible

backrush situation.

MF-rule3.2.6

[lisp :: length (new-symptoms) = 1]
[THERE EXISTS symptom in new-symptoms

WHERE [fault of symptom = fast-trip]

< [THERE EXISTS symptoml in top-symptoms

< [smirch of symptom = switch of symptoml] >] >]

::>

[diagnosis = found-possible-backrush]

Rule 3.2.7 checks that if we did get a single new symptom but it

isn't a fast trip or it isn't one of the switches of the original

top-symptoms, then we have another unexpected situation.

MF-rule3.2.7

[lisp :: length (new-symptoms) = i]

[THERE EXISTS symptom in new-symptoms

< [fault of symptom <> fast-trip]

OR

[FOR 1I_ symptom1 in top-symptoms

< [switch of syIptom <> switch of symptoml] >] >]

::>

[diagnosis = unexpected-retrip-possible-backraeh]

Q@

@@ The 4.x rules set things up to treat Imltiple top symptoms as

@@ individual top symptoms, as different faults. It grabs

@@ all the cases that weren't applicable in the 2.x and 3.x series.

@Q

MF-rule4.1

SSM/PMAD Technical Reference
III-113

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

[lisp :: length (top-symptoms) > t]

[THERE EXISTS symptom in top-symptom

< [switches-below of switch of symptom = empty]

[fault of symptoa = over-current]

[THERE EXISTS symptoml in top-symptoms

NHERE [symptom <> symptom!]

< [activity of switch of symptoa <>

activity of switch of sy_tom!] >] >]

::>

[the-indlvidual-symptoms = symptom-set]

MF-rule4.2

[lisp :: length (top-symptoms) > I]

[FOR iLL symptom in top-symptoms

< [fault of sympton = under-voltage] >]

[THERE EXISTS symptom in top-symptoms
< [THERE EXISTS switchl in siblings of switch of symptom

< [command of event of switchl = n]

[FOR ALL symptoml in top-symptoms
< [switchl <> switch of sympto=l] >] >] >]

::>

[the-individual-symptoms = top-symptoms]

MP-rule4.3

[lisp :: length (top-symptoms) > I]

[F0R ALL symptom in top-symptoms

< [fault of symptom <> under-voltage] >]

::>

[the-individual-symptoms = top-symptoms]

MF-rule4.4

[lisp :: length (top-symptoms) • 1]

[THERE EXISTS symptom in top-symptoms

< [fault of sympCon = under-voltage] •]

[THERE EXISTS symptom in top-symptoms

< [fault of symptom <> under-voltage] •]

::>

[the-individual-symptoas = top-symptoms]

MF-rul e4.5

[lisp :: length (top-symptoms) = 1]

@@ This next selector is for the negation of the series two rules (Bah!)

@@ The under voltage should have been caaght by the series two rules.

[THERE EXISTS symptom in top-symptoms

< [fault of symptom 0 under-voltage] •]

::>

[the-individual-symptoms = top-symptoms]

SSM/PMAD Technical Reference
III-114

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

@@

0@ There are two ways that we can finish diagnosing hard faults.

@@ One way is by concluding a value for diagnosis based on one of the cases
@@ in the 2.x and 3•x series of rules. The other is by going through all

@@ the individual top symptoms and getting a diagnosis for all of them

@@ (adding them to the diagnosis set one be one)•

@@ The 5•x series of rules are simply to manage the looping necessary

@@ to diagnose each top-symptom individually as individual faults•

@@

MF-rule6

[the-individual-symptoms = empty]

::>

[multiple-hard-fault-analysis = done]

MF-rul e5.1

[the-individual-symptoms <> empty]

[top-symptom = lisp :: first (the-individual-symptoms)]

[the-individual-symptoms = lisp :: rest (the-individual-symptoms)]

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

@@

The 6.x series of rules are used to diagnose single faults with

only a single top symptom (not multiple tops, they were handled

above). This is very similar, but simpler, to the original set

of rules for doing hard-fault diagnosis. Some simplicity is

obtained by handling backrush and under-voltage faults in the

earlier rules.

The types of faults that will be detected in the 6.x series of rules

are over current and fast trip faults. They can also be with

a number of masked faults where sensors didn't work properly.

Additionally, these rules are smart enough that if a fault is

found that is lower than the top, and there are other potential

faults in a different por$ion of the tree below the top, then

those other faults are added to the-individual-syzptoms so that

they may be diagnosed as well•

@@

@@ Rule 6.1 simply opens all the switches from the top-symptom on

@@ down. This is an initialization step.

@@

MF-rule6.1

[switch of top-symptom = power-domain :: kludge-switch (top-sywptom)]

[fault of top-symptom = power-domain :: kludge-fault (top-symptom)]

[new-symptoms = power-domain :: open-switches (top-symptom)]

SSM/PMAD Technical Reference
III-115

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

@@

@_ Rule 6.2 determines if we got sons trips as a result of opening

@_ the switches. Getting neu synptons during the open operations is an

eQ unexpected result and notification to the user will be given of

@@ this problem.

@@

MF-rule6.2

[lisp :: length (new-sysptoM) • 0]
::>

[diagnosis-set : diaEnosis-set PLUS

pover-doaain :: make-diagnosis (:name unexpected-synptoms-during-open

: top-symp top-symptom

:slot1 new-symptonm)]

@@

@@ Rule 6.3 flips the top switch. It collects any symptoms that may arise

as a result of the flip.

@@

MF-rulo6.3

[lisp :: length (new-synptou) = 0]

::>

[new-sy_ptoms - power-domain :: flip-switch (seltch of top-symptom)]

@@

@@ Rule 6.4 checks if there was more than one symptom as a result of the

@@ flip of the single top switch. If so this is an unexpected situation

@Q and the user will be notified.

QQ

MF-ru! e6.4

[lisp :: length (new-symptoms) > I]

::>

[diagllosie-eet = diaEnosis-set PLUS

power-domain :: make-diagnosis

(:nane unexpected-too-many-symptons-flip-top

:top-syrup top-symptom :elotl nee-symptoms)]

@@

Rule 6.5 finds the case where the top switch retripe on the

sale trip as a result of the flip operation. This is a strong

@@ indication of a short directly below the top switch.

The diagnosis also will note if there were any fast trips at

H the bottoa level (and that the top switch also tripped on fast trip)

N and surest the possibility of energy stornge in the loads

@@ drlviug those bottom fast trips.

@@

MY-rule6.5

[lisp :: length (new-synptou) = I]

SSM/PMAD Technical Reference
III-116

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

[THERE EXISTS symptom in new-synptons

< [switch of symptom = switch of top-syuptom]

[fault of symptom = fault of top-symptom] >]

..)

[diagnosis-set = diagnosis-set PLUS

power-domain :: make-diagnosis (:name retrip-on-flip

:top-synp top-symptom)]

Q@

@0 Rule 6.6 also detects a single retrip on the flip operation, but

@@ this retrip is either a different symptom or a different switch or

Q@ both, and therefore is unexpected. The user will be notified.

@@

MF-rule6.6

[lisp :: length (new-symptoms) = I]

[THERE EXISTS symptom in new-symptons

< [fault of symptom <> fault of top-symptom]

OR

[switch of symptom <> switch of top-symptom] >]

::>

[diagnosis-set = diagnosis-set PLUS

power-domain :: make-diagnosis (:name unexpected-retrip-during-flip

:top-symp top-symptom

:slotl new-synptoB)]

66

66 Rule 6.7 checks the case where the top switch did not retrip during

66 the flip operation and notes that there are no switches below

@@ the top switch. In this case, the fault is not found and there

@@ is nowhere else to check. Perhaps the fault burned itself clear?

@@

MF-rule6.7

[lisp :: lenEth (new-symptoms) = 0]

[switches-below of switch of top-symptom = empty]

::>

[diagnosis-set = dia831osis-set PLUS

power-domain :: make-diagnosis (:name not-found-no-levels

:top-synp top-symptom)]

@6

@6

@@

@6

@@

@6

@6

Rule 6.8 checks that there were no new trips during the flip operation

on the top switch, but in this case there are switches below that

can be tested too. So this rule initializes some variables to

start flipping and closing the lower switches.

This rule also closes the top switch in preparation for flipping

and closing the lower switches

It is at this point of the game that we are now interested in

SSM/PMAD Technical Reference
III-117

Appendi:, _II
SSM/PMAD Technica_Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

H finding masked faults. It is a possibility that

@@ a loser switch's current trip sensor is broken and that therefore

OQ the top seitch tripped.
QQ

NF-rule6.8

[lisp :: length (nee-symptoms) = 0]

[lisp :: length (switches-below of switch of top-symptom) > 0]
::>

[suitches-beloe-to-test = empty]

[switches-below-cant-test = empty]

[switches-below = switches-beloe of switch of top-symptom]

[nee-symptoms : poe@r-domain :: close-switch (sgitch of top-symptom)]

@Q

@@ Rule 6.8.1 checks £o see if we got new symptoms during the close of

@@ of the top seitch. If ee did this is completely unexpected.

@@ A nee symptom should have only come during the flip (since we

@@ are diagnosing current trips right no@). We will notify

@@ the user of this problem.
@@

MF-rule6.8.1

[lisp :: length (nee-symptoms) > 0]

::>

[diagnosis-set - diagnosis-set PLUS

power-domain :: make-diagnosls (:name unexpected-trips-during-close-top

:top-syrup top-symptom

:slot! nee-sy_toas)]

@@ Rule 6.8.2 checks that we didn't get any nee symptoms as a result

@@ of the close of the top switch and therefore ee can go on to rule
@@ 6.9

@@

MF-rule6.8.2

[lisp :: length (nee-symptons) = 0]

::>

[level = I]

eQ

(_ Rule 6.9 sets up the seitches-beloe-to-test and seitches-belo_-cant-test

@@ vaziables based upon the status of the switch below and ehether it

@@ was supposed to be on.
0@

MF-rule6.9

[level > 0]

.:>

[FOR ALL switch in seitches-beloe

SSM/PMAD Technical Reference
III-118

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

_EKE [tripped of switch = under-voltage]
[co.and of event of switch = n]

[pernission-to-test of event of switch = y]

< [switches-below-to-test = switches-below-to-test PLUS switch] >]

[FOR ALL switch in switches-below

WHERE [command of event of switch = n]

[perlaission-to-tost of event of switch = n]

OR

[command of event of switch = n]

[tripped of switch <> under-voltage]

< [switches-below-cant-test = switches-below-cant-test PLUS switch] >]

@¢

0@ Rule 6.10 flips the switches that can be tested to see if

@@ we get any retrips.
@Q

KF-rule6.10

[lisp :: length (switches-below-to-test) > 0]

.:>

[new-symptoms = power-domain :: flip-switches (switches-below-to-test)]

Q@

@@ Rule 6.11 checks for the possibility that none of the lower switches

@@ may be tested. In this case we have to diagnose with what we got.

@0

MF-rule6.11

[lisp :: length (switches-below-to-test) = 0]

::>

[diagnosis-set = diagnosis-set PLUS

power-domain :: nake-diagnosls (:name not-found-cant-test-further

: top-syrup top-symptom

:slot1 switches-below-cant-test)]

@@

@@ Rule 6.12 checks to see if we got more than one nee symptom during

@@ the flips of the lower switches. This is possible if we have a

@@ masked fault. At this point we find the top symptoms of the nov

symptoms.
%0

KF-rule6.12

[lisp :: length (new-s_nptoms) • 1]

:->

[new-top-symptoms = poser-domain :: top-symptoms (new-symptoms)]

%%

%@ Rule 6.13 checks if we have more than one new top symptom.

%% If we do, this is unexpected and the user will have to be notified.

%%

SSM/PMAD Technical Reference
III-119

Appendix III

SSM/PMAD Technical Reference

Interim,

Final Report
Volume II

MCR-89-516

July 1990

l@'-ruleS, t3

[lisp :: length (new-top-symptoms) • I]

::>

[diagnosis-set = diagnosis-set PLUS

poser-domain :: make-diagnosis (:name unexpected-to-many-tops-a_ter-flips

: top-syrup top-symptoa

:slotl nn-symptoB)]

@Q

@@ Rule 6.14 checks that we did have only one new top symptom and that

it turns out to be the sane as the original top syuptom. This looks

@@ like a case where we found a masked fault.

Q@ We also reclose all the switches above the culprit stitch to enable

@@ further testing of other possible faults below the top switch.

@@ ge deternine if there are any other possible faults by calling

@@ the function new-diagnosable-symptons that looks for other fast

@@ trips or current trips below the top switch and either siblings

@@ of the switch that was the culprit or below the siblings of said

Q@ switch.

0@

MF-rule6.14

[lisp :: length (new-top-symptoms) = I]

[THERE EXISTS symptom in new-top-symptoms

< [fault of symptom = fault of top-symptom]

[switch of symptom = switch of top-symptom] >]

::>

[diagnosis-set = diagnosis-set PLUS

poser-domain :: make-diagnosis (:name found-below

: top-sy_p top-symptom
:slot1 which-switch)]

[power-domain :: reclose-switches (top-symptom wh$ch-switch)]

[FOR ILL symptom in

power-domain :: new-diagnosable-symptom (top-symptom which-switch)

< [the-individual-symptoss = the-individual-symptoms PLUS symptom] >]

@0 Rule 6.15 also checks that we got one new top symptom during the flips
H of the lower switches. But in this case it is not the same as the

original top symptom. This is an unexpected situation and the user

ee rill be notified.

ee
MF-x-ule6.15

[lisp :: length (new-tOl)-syuptoms) = 1]

[THERE EXISTS symptom in new-top-symptoms

< [fault of Symptom 0 fault of top-symptom]

OK

[switch of symptom 0 switch of top-symptom] >]

::>

%J

SSM/PMAD Technical Reference
III-120

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

[" diagnosis-set = diagnosis-set PLUS

poser-domain :: make-diagnosis (:name unexpected-different-top-after-flips

: top-sywp top-syupton

:81otl new-sywptons)]

@@

@@

@@

@@

@Q

@@

@@

¢¢

@@

Rule 6.16 checks that we did_t get any ueu symptoms and therefore

we close the lover switches now.

_F-rule6.16

[lisp :: length (new-syuptons) = 0]
::>

[nee-symptoms : power-domain :: close-svitches (seitches-belo.-to-test)]

Rule 6.17 checks that we didn't get any nee symptoms u a result of

closin E the loser sgitches. If this is the case ee detereine that

ee haven't yet found the fault at this level of testing. We set

seitches-beloe to empty in preparation for the next level of testing.

MF-rule6.17

[lisp :: length (nee-symptoms) = 0]
::>

[switches-below = aupty]

@@

@@ Rule 6.18 collects the next set of lower switches that might

@@ be testable.

@@

MF-rule6.18

::>

[FOR ILL switch in switches-below-to-test

< [switches-below = switches-below blION switches-below of switch] >]

ce

e@

e@

Q@

Rule 6.19 checks if there are no lower seitches below to test.

If this is the case and if there were switches belog the top switch

that we could not test we can diagnose the case as a not found case

in light of the fact that we also couldn't test some of the switches.
@@

KF-rule6.19

[lisp :: length (ssitches-below) : 0]

[lisp :: length (ssitches-beloe-cant-test) > 0]

::>

[diagnosis-set : diagnosis-set PLUS

poser-domain :: make-diagnosis (:name not-found-cant-test-further

:top-syap top-symptom

SSM/PMAD Technical Reference
III-121

Appendix III

SSM/PMAD Technical Refcrence

Interim

Final Report
Volume II

MCR-89-516

July 1990

:slotl switches-below-cant-test)]

@e

@@ Rule 6.20 checks that there are no lower switches below to test and

@@ that we have tested everything that could be tested. This is a simply

@@ not found case. Perhaps it was a transient?

e@

MF-rule6.20

[lisp :: length (switches-below) = 0]

[lisp :: length (switches-below-cant-test) = 0]

::>

[diagnosis-set = diagnosis-set PLUS

power-domain :: make-diagnosis (:name not-found-all-tested

:top-syup top-syaptom)]

@@

@@ Rule 6.21 checks that there are lower switches that might be testable

@e and therefore sets up the variables so that we can go back to rule 6.9

@@ and continue testing at the next level.

@@

KF-rule6.21

[lisp :: length (switches-below) > 0]
::>

[switches-below-to-test = empty]

[level = level PLUS 1]

@@

@@ Rule 6.22 determines that there were nee symptoms as a result of

@@ the close of the lower switches. We s_ply get the top symptoms

@@ of the nee symptoms in this rule.
MF-rule6.22

[lisp :: length (new-symptoms) > 0]
::>

[nn-top-symptoms = poe@r-domain :: top-symptoms (new-symptoms)]

@@

@@ Pule 6.23 notes that ee got a single top syB, ptom and it is the

@@ same as the original top symptom. The difference between this

@@ rule and 6.14 is that this happened during the closes. The

@@ diagnosis needs to look at the topology to determine what might

@@ account for this (namely and over current trip and multiple

@@ lower switches drawing too much current in tandem while intermediate

@@ switches may have broken sensors or be the same rating of the

@e top switch). If this is a fast trip case it doesnJt make much

sense.

@@ We don't do reclos_ here like ee do in 6.14 since this

@@ situation is not as @ell defined.

@@

SSM/PMAD Technical Reference
III-122

J

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

©0

OQ

¢@

Q©

@G

0Q

MF-rule6.23

[lisp :: length (new-top-symptoms) = I]

[THERE EXISTS symptom in nee-top-syaptoas

< [fault of symptom = fault of top-symptom]

[switch of symptom = switch of top-symptoa] >]

...>

I" diagnosis-set = diagnosis-set PLUS

power-domain :: make-diagnosis (:name possible-found

:top-syap top-symptom
: slot1 which-switch

:slot2 switches-below-to-test)]

Rule 6.24 checks that we got one nee top symptom as a result of the

closes of the lower switches but that this new symptom isn't the

same as the original top symptom. This is an unexpected situation

and the user will be notifSed.

MF-rule6.24

[lisp :: length (new-top-symptoms) = I]

[THERE EXISTS symptom in new-top-symptoms

< [fault of symptom 0 fault of top-symptom]

OR

[switch of symptom <> s.itch of top-symptom 3 >]

::>

[diagnosls-set = diagnosis-set PLUS

power-domain :: make-diagnosis

(:name unexpected-different-trip-durinE-closes

:top-sywp top-symptom :slotl new-symptoms)]

@Q

@@

@¢

QQ

Q@

MF-rule6.25

[lisp :: length (new-top-symptoms) > 1]

::>

[diagnosis-set = diagnosis-set PLUS

Rule 6.25 detects the case where more than one new top symptom

resulted from the close operation of the lower switches. This is

also unexpected and the user will be notified.

power-domain :: make-diagnosis (:name unexpected-new-trips-during-closes

:top-sylp top-symptom

:slot1 new-s_toas)]

Q@

Q@ The terlination condition is setup by rule 5
@@

[multiple-hard-fault-analysis = done]

SSM/PMAD Technical Reference
III-123

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

DONE

Diagnosis Rule Group

@@

ee The Diagnosis gule Group

@@

e@ This rule group takes a diagnosis and prints out relevant infornation about

@@ the diagnosis and sets up any out of service information on sgitches.

@@

RULE-GROUP : NF-Diagnosis

@@

@@ HF-diag-1 (no-power-to-bus)

@@ Diagnosed in MF-rule2. !

@%

MF-diag-1

[diagnosis ffi no-power-to-bus]

::>

[poe@r-domain :: grite ("The following switches tripped on under voltage:")]

[FOR ALL symptom in top-synpto=s

< [power-domain :: urite (" "a" s.itch of symptom)] >]

[THERE EXISTS symptom in top-synpto-s

< [pouer-donain :: grits

("Sensor *a, the top sensor of the bus, registers less than the nominal"

top-sensor of sgitch of symptom)]

[pogsr-donaln :: write ("amount of voltage.")] >]

[poser-domain :: @rite ("POSSIBLE CAUSES:")]

[po.er-domain :: @rite (" Most Likely:")]

[poser-domain :: grits (" Less than nouinal voltage supplied to bus.")]

[FOR ALL sy,.ptom in top-symptoms

< [power-domain :: out-of-service (switch of syIpton)] >]

[diagnosis = :unknmm]

@@

H MF-diag-2 (broken-cable-beteeen-sensor-above-and-u-v-switches)

@¢ Diagnosed in MF-rule2.2

N

MF-diag-2

[diagnosis = broken-cable-betgeen-sensor-above-and-u-v-suStches]

::>

[power-domain :: write ("The folio@lug se$tches tripped on under voltage:")]

[FOR _ symptom in top-symptoms

< [power-domain :: urite (" "a" svitch of symptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: eri_e

("Sensor "a, the top sensor of the bus, registers less nominal voltage."

.... lrll

SSM/PMAD Technical Reference
IH-124

M./

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

k,._j/ top-sensor of switch of symptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: write

("Sensor "a, the sensor above the tripped switches, also registers"

sensor-above of switch of symptom)]

[power-domain :: Ivrite ("nominal voltage.")] >]

[power-domain :: urite ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write

(" Switch input cables to the switches disconnected in some fashion.")]

[power-domain :: write (" Less Likely:")]

[power-domain :: write

(" Break in cable between the sensor above the tripped switches and the bus")]

[power-domain :: vrite ("of the tripped switches.")]

[FOR ALL symptom in top-symptoms

< [power-domain :: out-of-service (switch of symptom)] >]

diaEnosis = :unknown][

@@

@@ Ml:'-diag-3 (broke-output-cable-of-switch-above)

@@ Diagnosed in MF-rule2.3

@@

MF-diag-3

[diagnosis = broke-output-cable-of-switch-above]

:->

[power-domaln :: write ("The following switches tripped on under voltage:")]

[FOR ALL symptom in top-symptoms

< [power-domain :: vrlte (" "a" switch of symptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: Irrite

("Sensor "a, the top sensor of the bus, registers nominal voltage."

top-sensor of switch of symptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: write

("Sensor "a, the sensor above the tripped switches,registers less"

sensor-above of switch of symptom)]

[power-domain :: write ("than nominal voltage")]

[power-domain :: writs

("while, "a, the switch above the tripped switches, registers a nominal voltage."

switch-above of switch of symptom)] >]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write

(" The switch output cable of the switch above the tripped switches has")]

[power-domain :: write ("been disconnected in some fashion.")]

[THERE EXISTS symptom in top-symptoms

< [Power-domaln :: out-of-service

(switch-above of switch of symptom)] >]

SSM/PMAD Technical Reference
III-125

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[diagnosis = :unknown]

@Q

@@ MY-diag-4 (broke-input-cable-of-switch-above)

0@ Diagnosed in MF-rule2.4

@Q

MF-diag-4

[diagnosis = broke-input-cable-of-swltch-above]

.:>

[power-domain :: write ("The following switches tripped on under voltage:")]

[F0R ALL synptom in top-syBptons

< [power-domain :: write (" "a" switch of syuptom)] >]

[THERE EXISTS sylptom in top-symptoms

< [power-domain :: write

("Sensor "a, the top sensor of the bus, registers nominal voltage."

top-sensor of switch of synptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: write

("Sensor "a, the sensor above the tripped switches,registers less than"

sensor-above of switch of symptom)]

[power-domain :: write ("nominal voltage,")]

[power-domain :: write

("however, "a, the sensor above the switch above the tripped switches also"

sensor-above of switch-above of switch of sympton)]

[power-domain :: write ("registers less than nominal voltage and")]

[power-domain :: write

("'a, the switch above the tripped switches, cannot trip on under voltage."

switch-above of switch of symptom)] >]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write

(" The switch input or output cable of the switch above the tripped switches")]

[power-domain :: grite("has been disconnected in some fashion.")]

[THERE EXISTS synptou in top-symptoms

< [power-donain :: out-of-servlce

(switch-above of switch of symptom)] >]

[diagnosis _, :unknown]

e@

Q@ _-diag-5 (hreak-in-cable-above-sgitch-above-and-bad-u-v-sensor-switch-above)

QO Diagnosed in MF-rule2.5

Q@

MF-diag-5

[diagnosis =
break-in- cable-above-self ch-above-and-bad-u-v-sensor-swi_ch-above]

.:>

[power-domain :: write ("The following switches tripped on under voltage:")]

[FOR /iLL symptom in top-symptoms

SSM/PMAD Technical Reference
III-126

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume iI July 1990

< [power-domain :: write (" "a" switch of symptom)] >]

[THEKE EXISTS symptom in top-symptoms

< [power-domain :: write

("Sensor "a, the top sensor of the bus, registers nominal voltage."

top-sensor of switch of symptom)] >]

[THERE EXISTS symptom in top-symptoms

< [power-domain :: write

("Sensor "a, the sensor above the tripped switches,registers less than"

sensor-above of switch of symptom)]

[power-domain :: writs ("nominal voltage,")]

[power-domain : : grite

("however, "a, the sensor above the switch above the tripped switches also"

sensor-above of switch-above of switch of symptom)]

[power-domain :: write ("registers less than nominal voltage and")]

[power-domain :: write

("'a, the switch above the tripped switches, should have tripped but did not."

switch-above of switch of symptom)] >]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write

(" The switch input cable of the switch above the tripped switches has been")]

[power-domain :: write ("disconnected in some fashion and")]

[power-domain :: write (" also has a bad under voltage sensor.")]

[THERE EXISTS symptom in top-s_ptons

< [power-domain :: out-of-service

(switch-above of switch of symptom)] >]

[diagnosis = :unknown]

@©

@0 MF-diag-6 (no-permission-to-test-possible-backrush)

@@ Diagnosed in MF-rule3.2.3

@@

MF-4iag-6

[diagnosis = no-pernission-to-tast-possible-backrush]

.:>

[power-domain :: write ("The followin E switches tripped on fast trip:")]

[FOR ALL symptom in top-symptoms

< [power-domain :: write (" "a" switch of symptom)] >]

[power-domain :: write ("|one of the switches has permission to test.")]

[power-domain :: write

('sit is possible that these switches tripped on fast trip due to a log impedance")]

[power-domain :: write

("short below one of then and the others due to energy storage in the loads.")]

[FOR iLL symptom in top-symptoms

< [power-domain :: out-of-service (switch of symptom)] >]

diagnosis = :unknown][

SSM/PMAD Technical Reference
III-127

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

@@

@@ MY-diag-7 (unexpected-to-mmy-retrips-ponible-backrush)

@@ Diagnosed in MF-rulo3.2.4

@@

MF-diag-7

[diagnosis = unexpected-to-many-retrips-ponible-backrush]

::>

[pouer-domain :: write ("The following switches tripped on fast trip:")]

[FOR ALL symptom in top-synptons

< [power-domain :: write (" "a" switch of synpton)] >]

[power-domain :: write

"During testing by flipping the switches the folloeiug synptons occurred:")]

[FOR ALL symptom in new-synptoB

< [power-domain :: write ("'a on "a" switch of symptom fault of symptom)] >]

[power-domain :: write

("This is not a situation that is diagnosable in the existing rule set.")]

[FOR ALL symptom in top-sylptons " • "

< [power-domain :: out-of-service (switch of synptom)] >]

[diagnosis = :unknown "l " -:_ _ : : : :

¢@

@@ NF-diag-8 (no-retrips-on-flips-possible-backrush)

@@ Diagnosed in NF-rale3.2.5
Q@

MF-diag-8

[diagnosis -- no-retrips-on-flips-possible-backrush]

[lisp :: length (s.itches-to-test) = lisp :: length (top-synptoem)]

::>

[po.er-domain :: writs (*'The follo.ing s.itches tripped on fast trip:")]

[FOR ALL synpton in top-synptons

< [power-domain :: write (" "a" suitch of symptom)] >]

[power-domain :: write ("lone of the switches retripped during testing.")]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write (" I low inpedance short that was burned clear.")]

[power-domain :: write (" a transient in a load below one of the switches.")]

[power-donain :: write

("Cause of other switches tripping could be due to energy storage in the loads")]

[poeer-donain :: write ("below them.")]

[FOR ILL synpton in top-synpto--

< [power-dosain :: out-of-service (switch of symptom)] •]

[diagzosis = :uknon]

e@

Q@ MF-diag-9 (no-retrSps-on-flips-possible-backrush)

Diagnosed in NY-rule3.2.5

MF-diag-9

V

%_/

SSM/iaMAD Technical P_eren_
III-128

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[diagnosis = no-retrips-on-flips-possible-backrush]

[lisp :: length (switches-to-test) < lisp :: len_h (top-synptons)]
::>

[power-domain :: write ("The following switches tripped on fast trip:")]

[FOR ALL synpton in top-synptons

< [power-domain :: writs (" "a" switch of synptom)] >]

[power-domain :: write ("None of the switches retripped during testing.")]

[power-domain :: write

("However, only the following switches had permission to test:")]

[FOR ALL switch in switches-to-test

< [power-domain :: write (" "a" switch)] >]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write

(" a low impedance short below one of the switches that was not tested.")]

[power-domain :: write

("Cause of other switches tripping could be due to energy storage in the loads")]

[power-domain :: write ("below them.")]

[FOR ALL synptoa in top-syuptonm

< [power-domain :: out-of-service (_ switch of symptom)] >]

[diagnosis = :unknown

J

O@

0@ HF-diag-lO (found-possible-backrush)

0@ Diagnosed in MF-ruleS.2.6
@0

MF-diag-lO

[diagnosis = found-possible-backrush]

[lisp :: length (switches-to-test) < lisp :: length (top-symptoms)]

::>

[power-domain :: write ("The following switches tripped on fast trip:")]

[FOR aLL symptom in top-symptoms

< [power-domain :: write (" "a" switch of synptom)] >]

[THERE EXISTS syBptom in new-symptoms

< [power-domain :: write

(*'During testing of the switches, _'a, re tripped on fast trip."

switch of symptom)] >]

[power-domain -; write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[THERE EXISTS syupton in new-symptoms

< [power-domain :: write

(" Los impedance short below "a." switch of sympton)] >]

[power-domain :: write

("Cause of other switches tripping due to energy storage in the loads below them.")]

[THERE EXISTS synptom in new-sympto--

< [power-domain :: out-of-service (switch Of symptom)]

[FOK ALL symptonl in top-symptons

WHERE [switch of symptom1 <> switch of synptom]

SSM/PMAD Technical Reference
III-129

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516
Volume II July 1990

< [power-domain :: out-of-service (switch of sTmptoml)] >] >]

[diagnosis = :unknown]

@@ MY-diag-ll (unexpected-retrip-possible-backz_sh)

@@ Diagnosed in RF-ro3.e3.2.7

@@

MF--diag-i I
[diagnosis = unexpected-retrip-possible-backrush]

[power-domain :: write ("The following switches tripped on fast trip:")]

[FOR ALL syaptos in top-syaptoms

< [power-domaln :: write (" "a" switch of sylpto=)] >]

[powsr-do_ain :: write

("During testing by flipping the switches the following symptoms occurred:")]

[FOR ALL symptom in new-syaptoms

< [power-domain :: write (" "a on "a" switch of symptom fault of symptom)] >]

[power-domain :: write

("This is not a situation that is diagnosable in the existing rule set.")]

[FOR iLL symptom in top-symptoms

< [power-domain :: out-of-service (switch of symptom)] >]

[diagnosis • :unknown]

@@

@Q HF-diag-12 (unexpectsd-symptoms-du_ing-opon)

@0 Diagnosed in MF-rule6.2
@@

](Y-diag-12

FOR ALL diagnosis in diagnosis-set

gHERE [name of diagnosis = unexpected-symptoB-during-open]

< ::>

[diagnosis-set : diagnosis-set](INUS diagnosis]

[power-doaain :: Irgite ("'a tripped on "a."

switch of top-syrup of diagnosis

fault of top-sysp of diagnosis)]

[power-domain : : writs

("During opening of the switches for testing the follow£ng syatoms occurred:")]

[FOR ALL symptos in slot1 of diagnosis

< [power-domain :: write

(" "a on "a" switch of symptoa fault of sympto_)] >]

[power-domain : : wzite

("This is not a situation that is diagaosable in the existing rule set.")]

[power-doaain :: out-of-service (switch of top-syap of diagnosis)]

[FOR ALL symptoa in slotl of diagnosis

< [power-doaain :: out-of-service (switch of sywptom)] >] >

Q@

SSM/PMAD Technical Reference
III-130

Aupendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

@@ MF-diag-13 (unexpected-too-many-synptoms-flip-top)

@@ Diagnosed in HF-rule6.4

@@

MF-diag-13

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis - Imexpected-too-nany-synptoms-flip-top]

< ::>

[diagnosls-set -- dis_nosis-set MI_S diagnosis]

[poger-domaln :: vrite ("'a tripped on "a."

smirch of top-syrup of diagnosis

fault of top-synp of diagnosis)]

[poger-donain :: write

("During flipping of the top s.itch for testing the follo.ing symtoms occurred:")]

[FOR £LL symptom in slot1 of diagnosis

< [pover-domain :: vrite

(" "a on "a" s.itch of symptom fault of symptom)] >]

[po.er-domain :: write

("This is not a situation that is diaEnosablo in the existing rule set.")]

[poger-domain :: out-of-service (smirch of top-symp of diagnosis)]

[FOR £LL symptom in slotl of dia4_osis

< [poser-domain :: out-of-servlce (svltch of synptom)] >] >

@@

@@ MF-diag-14 (retrIp-on-flip)

@@ Diagnosed in NF-rule6.5

@@

@@ Need to look at the possibility of some bottom level smirches below

@@ the top switch that lay have tripped on fast trip due to energy storage.

@@

MF-diag-14

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis -- retrip-on-flip]

< [fault of top-syrup of dia_losis -- ovor-c_Lrront]

::>

[diaEnosls-set = diagnosis-set MINJS di_osis]

[power-domain :: erite ("'a tripped on "a."

switch of top-symp of diagnosis

fault of top-syrup of diagnosis)]

[power-domain :: erite ("During testing "a retripped on "a."

switch of top-syrup of diagnosis

fault of top-syrup of diagnosis)]
@@ high-inpedance or low-iJtpedanco (over.current or fast-trip)

[power-domain :: urite ("POSSIBLE CIUSES:")]

[power-domain :: urite (" Most Likely:")]

[power-domain :: write

(" High impedance short in cable belov suitch, switch output of switch, or the")]

[pogor-domain :: erite ("switch input of one of the lover svitches.")]

[pover-donain :: grits (" Loss Likely:")]

SSM/PMAD Technical Reference
III-131

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

[power-domain :: write (" Current sensor in switch readin E high.")]

[power-domain :: out-of-service (switch of top-symp of diagnosis)] >

Q@

Q@ MY-diag-15 (retrip-on-flip)

Q@ Diagnosed in MF-rule6.5

@@

QQ leed to look at the possibility of some bottom level switches below

@@ the top switch that nay have tripped on fast trip due to energy storage.

Q@

KF-diag-l$

FOR ALL diagnosis in diagnosis-set

gHERE [naue of diagnosis ffi retrip-on-flip]

< [fault of top-synp of diagnosis ffi fast-trip]

:.>

[diagnosis-set : dia_osis-set MINUS diagnosis]

[power-domain :: write ("'a tripped on "a. '°

switch of top-syrup of diagnosis

fault of top-syap of diagnosis)]

[power-domain :: write ("During testing "a retripped on "a."

switch of top-syrup of diagnosis

fault of top-syap of diagnosis)]

@@ high-JJpedance or low-_pedance (over-current or fast-trip)

[power-domain :: write ("POSSIBLE CIUSES:")]

C ,,

[power-domain

[power-domain

Low impedance

[power-donain

[power-donain

[power-domain

[power-domain

:: write (" Most Likely:")]

: : write

short in cable below switch, switch output of switch, or the")]

:: write ("switch input of one of the lower switches.")]

:: write (" Less Likely:")]

:: write (" Current sensor in switch reading high.")]

:: out-of-service (switch of top-symp of diagnosis)] >

xj

Q@

QQ MF-diag-16 (unexpected-retrip-during-flip)

@Q Diagnosed in MP-rule6.6

@@

MF-diag-16

FOR ALL diagnosis in diagnosis-set

VHEILE [name of diagnosis = unexpected-retrip-during-flip]

[diagnosis-set = diagnosis-set NILUS diagnosis]

[power-domain :: write ("'a tripped on "a."

switch of top-syap of diagnosis

fault of top-synp of diagnosis)]

[power-domain :: write

("During flipping of the top switch for testing the following syaton occurred:")]

[FOR ALL symptom in slot1 of diagnosis

...... lr-i [11

SSM/PMAD Technical Reference
III-132

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

< [power-<lomain :: write

(" "a on "a" switch of symptom fault of symptom)] >]

[power-domaln :: write

("This is not a situation that is diagnosable in the existing 1_L1e set.")]

[power-domain :: out-of-service (switch of top-syBp of diagnosis)]

[FOR ILL symptom in slotl of diagnosis

< [power-domain :: out-of-service (switch of symptom)] >] >

@0

@@ MF-diag-17 (not-found-no-levels)

@@ Diagnosed in MF-rule6.7
@@

MF-diag-17

FOR AIL diagnosis in diagnosis-set
WHERE [name of diagnosis = not-found-no-levels]

< ::>

[diaEnosis-set = diagnosis-set MINUS diagnosis]

[power-domain :: write ("'a tripped on "a "

switch of top-synp of diagnosis

fault of top-sytp of diagnosis)]

[power-domain :: write

("The switch did not retrip during testing and there are no switches below")]

[power-domain :: write ("this switch.*')]

[power-domain :: write ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domain :: write (" i temporary short that was burned clear.")]

[power-domain :: write (" a transient in the load below the switch.")]

[power-domain :: out-of,service (switch of top-syBp of diagnosis)] >

0@

@@ MF-diag-18 (unexpected-trips-during-close-top)

@@ Diagnosed in MF-rule6.8. I

0¢

MF-diag-18

FOR ALL diagnosis in diaEnosis-set

WHERE [name of diagnosis = unexpected-trips-during-close-top]

< ::>

[diagnosis-set = diagnosis'set MIJUS diagnosis]

[power-domain :: write ("'a tripped on "a."

switch of top-syrup of diagnosis

fault of top-syrup of diagnosis)]

[power-domain :: write

("During the close of the top switch for subsequent testing the following")]

[power-domain :: write ("symton occurred:")]

[FOR £LL symptom in slot1 of diagnosis

< [power-domain :: write

(" "a on "a" switch of symptom fault of symptom)] >]

[power-domain :: write

SSM/PMAD TechnicaJ Reference
III-133

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[

[
r

[
[
[

[

[

@Q

("This is not a situation that is diagnoeable in the existing rule set.")]

[power-domain :: out-of-service (switch of top-eynp of diagnosis)]

[FOB ILL synptom Lu slotl of diagRosis

< [power-dona_u :: out-of-service (switch of symptom)] >] >

@Q

@@ MF-dia_-19 (not-found-cant-test-further)

@@ Diagnosed in MY-rule6.ll and MF-rule6.19

OQ

MP-diag-19

FOR ALL diagnosis in diagnosis-set

gHERE [nane of diagnosis -- not-found-cant-test-further]

[diagnosis-set = diagnosis-set MINUS diagnosis]

[power-domain :: write ("'a tripped on "a."

switch of top-synp of diagnosis

fault of top-synp of diagnosis)]

power-domain : : write

("The fault has not been repeated (and therefore not found).")]

power-domain :: write ("The following switches cannot be tested:")]

FOR ALL switch in slot1 of diagnosis

< [power-domain :: write (" "a" switch)] >]

power-domain :: write ("POSSIBLE CAUSES:")]

power-domaln :: write (" Most Likely:")]

power-domain :: write (" I transient short somewhere below "a."

switch of top'synp of diagnosis)]

power-domain :: write

(" £ short below one of the switches that were not testable.")]

power-domain :: out-of-service (switch of top-synp of diagnosis)] >

MF-diag-20 (unexpect ed-t o-many-t ops-aft er-flips)

Diagnosed in MF-rule6.13

@@

MF-diag-20

FOR £LL diagnosis in diagnosis-set

WHERE [name of diagnosis : unexpected-to-s_ny-tops-a_ter-flips]

< ::>

[diagnosis-set = diagnosis-set MINUS diagnosis]

[power-domain : : write ("'a tripped on "a."

switch of top-synp of diagnosis

fault of top-synp of diagnosis)]

[power-domain :: write

("During testing of the switches beIow "a, the _olloging synptoms occ_red:"

switch of top-synp of diagnosis)]

[FOR iLL synptom in slot1 of diagnosis

< [power-donain :: _rite

(" "a on "a" switch of sylaptom fa_t of sy_pto_)] >]

::: : ± : :

SSM/PMAD Technical Reference :
III-134

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

[poser-domain :: write

("This is not a situation that is dia_osable in the existi_ rule set.")]

[power-domain :: out-of-service (switch of top-syup of diagnosis)]

[FOR ALL symptom in slot! of diaEnosis

< [poser-domain :: out-of-service (switch of symptom)] >] >

@@

@Q MF-diag-21 (found-below)

Q@ Diagnosed in MF-rule6.14

@@

MF-diag-21

FOR ALL diaEnosis in diagnosis-set

WHERE [name of diagnosis = found-below

< :.>

[diaEnosis-set = diaEnosis-set MINUS diagnosis

[power-domain :: write ("'a tripped on "a."

switch of top-symp of dia_losis

fattlt of top-syrup of diagnosis)]

[power-domain :: vrite

("During testing of the lower switches the fault was repeated when "a was flipped."

slot1 of diaEnosis)]

[power-domain :: grits ("POSSIBLE CAUSES:")]

[power-domain :: write (" Most Likely:")]

[power-domaln :: write

(" A short below "a and (if the switches between "a and "a are of the same"

slotl of diagnosis slotl of diaEnosis switch of top-syrup of diagnosis)]

[power-domain :: write

("rating) a race to determine wb/ch switch actually trips.")]

[power-domain :: write

(" Othervise, the switches between "a and "a have failed current sensors"

slotl of diagnosis switch of top-syup of diagnosis)]

[poweer-domain :: write

("in addition to the short below "a." slot1 of diagnosis)]

[power-domain :: out-of-service (slot1 of diagnosis)] >

0@

@@ _-diag-22 (unexpected-different-top-after-flips)

@@ Diagnosed in MF-rule6.15

@@

MF-diaE-22

FOR ALL diagnosis in diaEnosis-set

WHERE [name of diagnosis = unexpected-different-top-after-fllps]

< ::>

[diagnosis-set : diagnosis-set MI_US diagnosis]

[power-domain :: _rrite ("'a tripped on "a."

switch of top-syRp of diagnosis

fault of top-syrup of diagnosis)]

SSM/PMAD Technical Reference
III-135

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[poser-domain :: write

("During testing of the lower switches the following eyaptoms occurred:")]

[FOR ALL eyaptoa in elotl of diagnosis

< [power-domain :: write

(" "a on "a" switch of syaptom fault of eyaptom)] •]

[power-domain :: write

(*'This is not a situation that is diagnosable in the existing rule set.")]

[power-domain :: out-of-service (switch of top-syIp of diagnosis)]

[FOR ILL eyaptom in slot1 of diagnosis

< [power-domain :: out-of-service (switch of eyaptom)] •] •

@Q

@@ KF-diag-23 (not-found-all-tested)

@@ Diagnosed in MF-rule6.20

@@

MF-diag-23

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis = not-found-all-tested]

[diagnosis-set : diagnosis-set MI_US diagnosis]

[power-domain :: write ("'a tripped on "a."

[

oe

[power-domain

("The fault

[power-domain

[Power-domain

[power-domain

[power-domain

power-domain

switch of top-symp of diagnosis

fault of top-symp of diagnosis)]

:: write

has not been repeated (and therefore not found).")]

:: write ("All the testing that is possible has been done.")]

:: write ("POSSIBLE CAUSES:")]

:: write (" Most Likely:")]

:: write (" I transient short somewhere below "a."

switch of top-syap of diagnosis)]

:: out-of-service (switch of toF-syap of diagnosis)] •

@@ MF-diag-24 (possible-found)

@@ Diagnosed in MF-rule6.23
@@

MF-diag-24

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis : possible-found]

< [fault of top-symp of diagnosis = over-current]

[diagnosis-set : diagnosis-set MII_S diagnosis]

[power-domain :: write ("'a tripped on "a."

switch of top-syap of diagnosis

fault of top-syap of diagnosis)]

[Power-domain :: write

("During testing of the lower switches the fault was repeated when "a was closed."

slotl of diagnosis)]

SSM/PMAD Technical Reference
III-136

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[
r
[

("

[

[

[
[

@@

power-domain :: write ("POSSIBLE CAUSES:")]

power-domain :: write (" Most Likely:")]

power-domain : : vrite

This may be indicative of a an over-current fault being generated by too")]

power-domain :: write ("many loads all in over-current in tandem.")]

power-domain :: write

("Since this situation is not very likely, "a is still being declared"

switch of top-syrup of diagnosis)]

power-domain :: write ("out of service.")]

power-domain :: out-of-service (switch of top-syrup of diagnosis)] >

@@ MF-diag-25 (possible-found)

@@ Diagnosed in MF-rule6.23

¢@

MF-diag-25

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis = possible-found]

< [fault of top-syrup of diagnosis = fast-trip]

::>

[diaEnosis-set = diagnosis-set MINUS diagnosis]

[power-domain :: write ("'a tripped on "a.*'

switch of top-syrup of diagnosis

fault of top-syrup of diagnosis)]

[power-domain :: write

("During testing of the lower switches the fault was repeated when "a was closed."

slotl of diagnosis)]

[power-domain :: write ("This should not be possible.")]

[power-domain :: out-of-service (switch of top-syrup of diagnosis)] >

@@

@@ MF-diag-26 (unexpected-different-trip-during-closes)

@@ Diagnosed in MF-rule6.24

@@

MF-diag-26

FOR ALL diagnosis in diagnosis-set

WHERE [name of diagnosis = unexpected-different-trip-during-closes]

< ::>

[diagnosis-set = diagnosis-set MIFu_S diagnosis]

[power-domain :: write ("'a tripped on "a."

switch of top-syrup of diagnosis

fault of top-syrup of diagnosis)]

[power-domain :: write

("During testing of the lower switches the following symptoms occurred:")]

[FOR ALL symptom in slot1 of diagnosis

< [power-domain :: write

(" "a on "a" switch of sylpton fault of sympton)] >]

[power-domain :: write

SSM/PMAD Technical Reference
III-137

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report MCR-89-516
Volume II July 1990

("This is not a situation that is diagnosable in the existi_ rule set.")]

[pover-donain :: out-of-service (switch of top-syrup of diagnosis)]

[FOR ALL s_ptoa in slotl of dia_osis

< [power-domain :: out-of-service (switch of symptom)] >] >

@@

@@ MF-diag-27 (unexpected-nee-trips-during-closes)

@@ Diagnosed in MF-rule6.25

@@

HF-ding-27

FOR ALL diagnosis in diagnosis-set

UHEP.E [name of diagnosis = unexpected-now-trips-during-closes]

< ::)

[diagnosis-set = diagnosis-set MIIUS diagnosis]

[power-dosain :: write ("'a tripped on "a."

switch of top-syrup of diagnosis

fault of top-synp of diagnosis)]

[power-donain : : write

("During testing of the lower switches the following sylptons occurred:")]

[FOR ALL syaptom in slotl of diagnosis

< [power-domain :: erite

(" "a on "a" switch of syaptom fault of synpton)] >]

[power-domain :: write

("This is not a situation that is diagnosable in the existing rule set.")]

[power-domain :: out-of-service (switch of top-symp of diagnosis)]

[FOK aLL synpton in slotl of diagnosis

< [power-domain :: out-of-service (switch of symptom)] >] >

[diagnosis = :unknown]

[diagnosis-set : enpty]

DOlE

V

%./

4.3.3 The Soft Fault Expert System

The soft fault expert system is one fairly simple rule group.

@Q

@Q The Soft Fault P.ule Group

e@

P.UI_-(_P.OUP : soft-fault

ee first deal eith the cases where there is an upper suitch that

ee can detect current

SF-p.ule!

FOP. ILL node in sf-nedes

WHEKE [upper-Hitch of node]

SSM/PMAD Technical Reference--
III-138

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

[current-trippable of upper-switch of node -- true]

< [power-domain :: loose-<

(power-domain :: sum-values (lower-switches of node)

latest-performance-current-avg of upper-sensor of node)]

[power-domain :: loose-<

(power-domain :: stun-values (lower-switches of node)

latest-performance-current-avg of upper-switch of node)]

:.>

[el-result = el-result PLUS upper-switch of node]

[analyzed of node = :analyzed] >

SF-Rule2

FOR ALL node in el-nodes

WHERE [upper-s.itch of node]

[current-trlppable of upper-switch of node = true]

< [power-domain :: loose---

(power-domain :: sum-values (lower-switches of node)

latest-performance-currsnt-avg of upper-sensor of nods)]

[power-domain :: loose-<

(power-domain :: sum-values (lower-switches of node)

latest-performance-current-avg of upper-switch of node)]

::>

[sf-result = el-result PLUS upper-ssltch of node]

[analyzed of node = :analyzed] >

SF-Rule3

FOR ALL node in el-nodes

NHERE [upper-switch of node]

[current-trippable of upper-switch of node = true]

< [power-domain :: loose->=

(power-domaln :: sum-values (loser-switches of node)

latest-performance-current-avg of upper-sensor of node)]

OR

[power-domain : : loose->--

(power-domaln :: sum-values (lower-ssitches of node)

latest-perforRance-current-avg of upper-ssitch of node)]

::>

[analyzed of node = :analyzed] >

@@ lOS do the nodes where there is an upper switch but it is not

@@ current trippable

SF-Rule4

FOR ALL node in el-nodes

WHERE [upper-ssitch of node]

[¢urrent-trippahle of upper-switch of node -- false]

< [po.er-domain :: loose-<

(poser-domain :: sum-values (loser-ssitches of node)

latest-performance-current-avg of upper-sensor of node)]

SSM/PMAD Technical Reference
III-139

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

Q@ Figure this one out!!!

[power-donain : : loose-<

(power-domain :: sun-values (lover-seitche8 of node)

latest-performance-currant-avg of upper-sensor of upper-node of

upper-sensor of node)]

::>

[sf-result = el-result PLUS upper-sgitch of node]

[analyzed of node = :analyzed] >

SF-Rule5

FO& ILL node in el-nodes

WHER_ [upper-svitch of node]

[current-trippable of upper-switch of node = false]

< [power-domain :: loose-ffi

(power-donain :: sun-values (lower-sgitches of node)

latest-performance-current-ave of upper-sensor of node)]

@@ Figure this one out!!!

[power-donain :: loose-<

(power-donain :: sun-values (loger-switches of node)

latest-performance-current-avE of upper-sensor of upper-node of

upper-sensor of node)]

::>

[el-result ffi sf-res_t PLUS upper-switch of node]

[analyzed of node ffi :analyzed] >

SF-Rule6

FOR ALL node in el-nodes

WHERE [upper-switch of node]

[current-trippablo of upper-switch of node -- false]

< [power-domain :: loo80->=

(power-donain .- sun-values (loeer-seitches Of node)

latest-perfornance-current-avg of upper-sensor of node)]

@@ Figure this one out!!!

[power-donain :: loo8e->=

(power-donain :: sun-values (lower-ewStches of node)

latest-performance-current-ave of upper-sensor of upper-node of

upper-sensor of node)]

::>

[analyzed of node = :analyzed] >

@Q Finally do the nodes where there is no upper switch

SF-Rulo7

FOR ALL node in el-nodes

WHERE [upper-switch of node = empty]

< e@ the possible fault has already been checked by rules 4-6

::>

[analyzed of node = :analyzed] >

V

V

SSM/PMAD Technical Reference
III-140

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

VolumeII July 1990

[FOB. ALL node in sf-nodes

< [analyzed of node = :analyzed] >

DO]rE

4.4 Function Reference

This part documents the functions used by the FRAMES knowledge agent to support al-

gorithmic functions of the expert systems. These are all defined in the knomad/r.ain/do-

main-functions, cl file.

The fault diagnosis expert system uses switches and symptoms in most of its rules. A

switch is simply a symbol referring to a switch name. A symptom, however, is a frame

with two slots: switch and fault. The following functions make use of both switches and

symptoms.

cluster-symptoms symptom.set &optional not-set [Function]

top-symptoms symptom-set koptional not-set [Function]

new-diagnosable-symptoms top-symptom which-switch]Function]

These functions are used to organize symptoms into sets. cluster-symptoms clusters the

symptoms into related sets as described by the approach taken to multiple faults above.

top-symptoms returns the list of top symptoms in the given symptom set. These would

be symptoms with switches that are not below any other symptoms with switches in the

symptom set. not-set is used to let the function know if symptom-set is a symbol or an

actual set of symptoms. If not-set is non-nil then the given symptom set is taken to be a

set of actual symptoms. Otherwise the symptoms are looked up as a symptoms slot reference

off of the given symbol in the database, top-symptoms returns the set of top symptoms of

the symptom-set, cluster-symptoms returns a set of symptom sets.

In the case of new-diagnosable-symptoms a fault has been found and the possibility

of further faults exists. If the switch that needs to be taken out of service (which-switch)
indicates that there are other subtrees of switches below the level of which-switch these

other subtrees will be examined for faults as well. new-diagnosable-symptoms returns

those symptoms that still need to be looked at for further faults.

get-switches-above switch [Function]

get-switches-below switch [Function]

These functions do exactly what there names imply, get-switches-above will return a

fist of switches that are above the given switch, get-switches-below will return a list of

switches below the given switch.

SSM/PMAD Technical Reference
III-141

Appendix III
SSM/PMAD TechnicalReference

Interim

Final Report
Volume II

MCR-89-516

July 1990

open-switches symptom

flip-switch switch

flip-switches switches

close-switch switch

close-switches switches

reclose-switches top-symptom which-switch

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

These functions are used by FRAMES for faultisolation,open-switches takes a symptom

and opens allthe switches below the switch of the symptom (including the switch). The

flip-switch and flip-switches functionsflipthe given switches. The close-switch and

close-switches functions closethe given switches, reclose-switches isused to closethe

switches between top-symptom and which-switch in preparation for further possible fault

diagnosis.

out-of-service switch [Function]

send-out-of-services [Function]

end-contingency [Function]

out-of-service isused to declare a switch out of service,send-out-of-services isthen

used to actually send these switches to the Symbolics for rescheduling purposes. Finally,

end-contingency iscalledto end the current contingency and finishthe current diagnosis

session.

sum-values switches

loose-= argl arg:2

loose-> aryl arg_

loose-< argl arg_

loose->= argI arg_

[Function]

[Function]

[Function]

[Function]

[Function]

These are simple algorithmic functions to support some of the weakness of the rule sys-

tem expression capabilities. These functions are all used in the soft fault expert system.

sum-values is used to add up the amperage average data of the switches for comparison

with other values. The loose functions are just like their corresponding =, /,, i, and /,=

functions except that they allow a ten percent margin float between the arguments. This is

because the sensors as well as the analog to digital conversion produces error in the actual

values and this ten percent factor is used to compensate.

SSM/PMAD Technical Reference
III-142

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

Rule

Management

System

Constraint

System

Plmaning/ Model-

Scheduling BIB_M_o _dSystem nlng

Uncertain T Non-monotonic]" Temporal [

Knowle • Knowle e Knowle e

Database

i @ oO

Qu_tative i
Reasoning

Database Interface

Figure 6: KNOMAD Layered Architecture

5 KNOMAD-SSM/PMAD Technical Reference

K N O M A D-S SM/P M A D, an abbreviation for Knowledge Management and Design applied to

the SSM/PMAD domain, is used to represent the domain of SSM/PMAD and provide sup-

port for managing multiple knowledge bases.

The architecture of KNOMAD-SSM/PMAD is shown in figure 6. It is a layered architec-

ture that consists of two primary layers. The first layer is the database while the second

layer consists of the knowledge base building and inferencing tools. The database layer is

further subdivided into two layers. The first of these is the database proper, used for storing

tuples. The second of these is the interface to the database. The database interface is where

knowledge is structured and abstracted from the primitive tuple representation.

KNOMAD-SSM/PMAD is also data-driven. What this means is that as data is entered into

the environment, any knowledge bases that use that data are notified of the change. They

can then go off and do what they want to do. By defining the KNOMAD-SSM/PMAD system

as both a layered architecture and data-driven, tremendous flexibility has been provided

(perhaps at the cost of some efficiency). It is relatively straightforward to add a new knowl-

edge based system tool such as a qualitative reasoning engine. The database proper is also

moduler. Right now it exists in the same location as K NO MXD-SS M / P MAO. However, there

is no reason a distributed database cannot be substituted to provide even more capabilities

for distributed artificial intelligence applications.

This section will describe the use of the database and the rule management system. Fol-

lowing that a description of adding tools to KNOMXD-SSM/PMXD will be provided. Further

information about K NO MXD-S SM/P MX D may be found in [Riec].

SSM/PMAD Technical Reference
III-143

Appendix III
SSM/PMAD Technical Referen_ :

Interim

Final Report MCR-89-516

Volume II July 1990

5.1 The Database

The database is used for a dual purpose. It is a database in the normal sense of the word,

where data may be stored and accessed. It also serves as working memory for any of the

knowledge based systems of the top layer of KNOMAD-SSM/PMAD. For the most part, the

user of the database only needs to manipulate that database interface layer of the database.

This is in terms of making assertions, matching database values, initializing the database,

etc. However, there are some operations that currently must be done at a lower level of the

database. The operations of both of these levels wiU be described here.

The KNOMAD-SSM/PMAD system was developed as a part of supporting the needs of

SSM/PMAD. It wasn't developed as a robust, general tool that would work well for all

domains. Although in spirit it is a domain independent system, there are problems in the

implementation that have not been completely worked out. These are mostly semantic

problems that deal with integration between the layers of KNOMAD-SSM/PMAD. We wiU

attempt to point these potential pitfalls out when they are relevant. The pitfalls are only

potential since the context of their use will determine how they may affect other parts of the

system.

5.1.1 Tuples and Views

The database supports the storage and retrieval of tuples. A tuple is an ordered sequence of

(possibly) typed fields. For example, the following are all tuples:

(color car-324 white)

(fact fact-23 john)

(car-23)

(eat restaurant-34 joel mud-pie-S87 june-23-1990)

(parent (son jane) tarzan)

As can be seen, tuples may be arbitrarily complex. Tuples can represent records, as in a

relational database, as well as logic.

Tuples are the basic item that is stored and retrieved in the KNOMAD-SSM/PMAV

database. The reasoning being that most knowledge based applications are interested in

small facts and not large sets of relationships as in typical commercial applications. This

does not mean that complicated relational structure cannot be easily represented. Frames,

described shortly, are an example of complex relational structure using the tuple represen-

tation.

Each field of the tuple may be typed. For example, if the first field is parent, it may

be that the final two fields must be people. These types of constraints may be represented

using the constraint system of the database.

SSM/PMAD Technical Reference
III-144

Appendix III
SSM/PMAD TechnicalReference

Interim
Final Report MCR-89-516

Volume II July 1990

A further abstraction provided by the databaseare views. In the traditional database

world a view provides a restricted access into the database. For example, if a record of

employees with fields of salary, labor grade, age, project, address is in the database a view

of the record for normal database users may only allow access to all the fields except for the

salary field. Thus the traditional view provides a window into the database. In KN OMAD-

SSM/PMAD a view is slightly different. A view provides a distinct database for storing data.

Thus a view is an organizational entity in KNOMAD-SSM/PMAD.

database :*view* [Variable]

This is the default view that is used by the database for storing and retrieving tuples. It is

not a good idea to rebind it, however, users may define their own views (described shortly).

database :view-init view [Function]

dnet :dnet-/nit view [Function]

viera-init is used to make a new view. view should be a symbol that will be bound to the

new view. dnet-init is used to initialize a particular view. When the user initializes the

database, the user should also use dnet-init to initialize the views created.

5.1.2 Database Constraints

Another aspect of database usage is the ability to add constraints to data in it. Constraints

in KNOMAD-SSM/PMAD are used to specify and type fields of tuples.

database:constraint constraint-pattern _optional code [Function]

constraint is used to specify a constraint on certain tuples in the database. The constraint-

pattern has the form (in BNF notation):

constraint-pattern ::= (item +) IID

item ::= constraint-pattern I (:type-dec1 ID) [(:type-spec ID)

The constraintpattern matches a tuple in three ways. One, ifthe current fieldof the pattern

is ID then the corresponding fieldof the tuple must be the same as ID. Two, ifthe current

fieldof the pattern is (:type-spec ID) then the corresponding fieldmust have the type as

specifiedby ID. And three,ifthe current fieldof the pattern is (:type-dec1 ID) then all

tuples with the corresponding fieldmust have type ID.

Now that is a bit confusing. The pattern willmatch all tuples based on the ID and

(:type-spec ID) fields.For all those tuples,the fieldswith (:type-dec1 ID) are con-

strained to have the correcttype.

SSM/PMAD Technical Reference
III-145

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

So, for example, the constraint pattern (color (:type-spec t) (:type-dec1 color))

will match the earlier tuple (color car-324 white) and constrain it to have a color in the

third field.

Constraints, as specified with this function, will be applied to all tuples as they are

added to the database. If the constraint does not pass the tuple, the tuple will not be

entered into the database and the storage operation will return :fail. When a new constraint

is added, all the existing facts that match the constraint and do not pass will he returned

by the constraint function. Finally, an optional argument code may be provided. If this is

provided, the code will be funcalled on tuples as they are added to the database. The code

should return a boolean value indicating pass or fail.

Constraints and the higher level tools, particularly the rule management system, have

not been will integrated together at this point. It is suggested that constraints not be used

at this time in conjunction with the rule management system.

5.1.3 Facts and Frames

The KNOMAD-SSM/PMAD database is currently configured to represent facts and frames.

Facts are simple tuple of the form (fact <fact> :value <value>). This simply says that

<fact> has value <value>.

Frames are very similarto objectsin object orientedprogramming but are more dynamic.

Frames allow one to store knowledge in the form of a fixed set of slots (representing the

frame) with fillersthat can vary from frame to frame. This islikea basic record with fields.

However, each slothas structure as well.

Every slothas one or more aspects. There are fiveaspects defined here: value, mustbe,

if-needed, if-added, and constraint. The value aspect represents the value of the slot

ifit has one. The if-needed aspect, ifpresent, provides a LISP procedure for returning a

value for the slot (the defaultprocedure issimply to return the VALUE aspect) ifthe slot

does not have a value aspect. The if-added aspect,ifpresent, isa chunk of code executed

whenever a slotiswritten to, that is,whenever a value is added to the slot (or changed).

The constraint aspect, if present, is a lisp predicate that must be satisfied for a value to

constitute a valid filler. The ,,ustbe aspect, if present, gives frames or atoms that fillers

must either be an instance of, or equal to. The MUSTBE aspect can either be a single such

item, or a list of [atomlframe]', where only one item in the list must be matched.

The if-needed, if-added, and constraint code are allfuncalledwith the current value

for the slotas the only argument. Other aspects than those described above are legal,but

have no specialmeaning to the frame system. All code isrun in an environment where the

specialvariable self isbound to the frame itself.

Multiple parents for a frame are defined. The sot aspects for a slotare inheritedfrom

the firstparent in the parent listthat has that slotaspect defined.

An isnev method can be defined for frames that executes some LISP code when a frame

SSM/PMAD Technical Reference
III-146

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

J
is instantiated. The isnew code is run in the internal environment for the frame, where name

is bound to the name of the frame, and self is bound to the frame itself. The set of isnews

collected from all parent frames is run when creating a new frame.

Frames can be defined as follows:

(frame :name name

:parents parent [(parent*)

:isnew code

:slots ({ (slot aspect value {aspectvalue}*)}*)

)

aspect ::= :if-needed [:constraint [:if-added [:value [:mustbe

mustbe ::= atom [frame-name [(atom* frame-name*)

frames:frame &key :name :parents :isnew :slots :view [Macro]

frames:fcreate-instance parent name [Function]

frame allows the user to define a new frame withthe parameters as discussed earlier. :view

is used to specify an alternate database view for storing the frame.

fcreate-instance is used to instantiate a new frame. This takes two parameters parent,

and name. parent must be the name of a previously defined frame, name will be the bound

to the new frame created and will be the name of the new frame.

frames :grind-frame frame [Function]

This function can be used to describe a frame, its children, and the slots and their values.

The following LISP session shows an example of defining a frame, creating an instance

and asserting a value (more on assertions later).

[1o3 SSMIPMAD:

(frame :name dog :parents (animal) ; animal must be a previously defined frame

:Isnew (format t "'_Creating a dog frame!")

:slots ((skin :value furry :mustbe organic)

(nose :value wet :mustbe moisture-level

:if-added (lambda (a)

(if (eq a 'dry)

(format t "This dog is sick!"))))))

Creating a dog frame!

<Frame: DOG>

SSM/PMAD Technical Reference
III-147

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

[11] ssM/PIIAI): (fcreate-tnstance 'dog 'gandalf)

Creating a dog frame!
<Frame: OANDALF>

[12] SSM/PMAD: (assert! '(frame gandalf nose

This dog is sick!

(FRAME GANDALF NOSE :VALUE DRY)

:value dry))

In this implementation making a frame also adds type information to the type hierarchy

for use with the constraint feature of the database. All slot and aspect values are stored in

the database and may be accessed with the assertion and retrieval functions.

5.1.4 Assertions and Retrievals

Now that the preliminaries have been discussed, tuples, facts and frames, asserting and re-

trieving tuples from the database can be discussed. There are four assertion and retrieval

operations available: assert !, remove !, match ! and retrieve !. These functions are de-

fined for facts and frames but not for the general tuple.

dbif:assert! fact koptional who view [Function]

fact may be a fact or a frame and must be quoted (this is a function), assert! uses a

primitive database function to actually store the pattern represented by fact. If for some

reason the pattern cannot be stored because of a failed constraint :fail will be returned,

otherwise the asserted fact will be returned.

who represents the process performing the assertion is used for purposes of locking mech-

anisms in the database. If the tuple being updated is locked, only the process represented by

the locker may change its value, view is used to determine what view to use for the database

storage, view defaults to *viev*.

The other primary function of assert! is to perform data-driven processing on tuples.

Currently this is all hard-coded. When a tuple is asserted, the function checks to see if

there are any rule management system dependencies on the tuple. If so assert! calls the

appropriate function to let the rule management system know about the added tuple. More
on this later.

dbif:reaove! fact &optional who view [Function]

remove! is used to remove a fact or frame from the database. If the pattern represented

by fact is locked then who must be the locker of the tuple, otherwise the tuple will not be

removed.

SSM/PMAD Technical Reference
III-148

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

v remove ! is similar to assert ! in that if there are rule management system dependencies

on the tuple being removed, then an appropriate function will be called to let the rule

management know about the deleted tuple.

dbif :match ! pattern ,_optional view [Function]

match! takes a pattern with variables in it and returns a list of tuples in the database that

match the pattern. A variable in the pattern is simply a symbol that starts with $. If there

are two variables in the pattern and they are the same, then the value they match must be

identical in both places (that is, they must be unifiable).

dbif:retrieve! pattern &optional view [Function]

retrieve ! takes a pattern that may not contain variables in it and returns the tuple in the

database that is identical to it, if there is one.

5.1.5 Locks

Locks are used for performing updates to tuples in the database. Locks are very simple to

use, one simply locks a tuple, reads and updates the value, and unlocks it.

dbif:lock pattern &optional who view [Function]

dbif:uzxlock pattern &optional who view [Function]

pattern may be any tuple pattern with variables as in the match ! function described above.

This way the user may lock and unlock multiple related tuples, who represents the process

doing the locking and unlocking.

5.1.6 Initialization

Initialization of the K N o M AD-S S M / P MAD database is done by using the initialization func-

tion. Initializing the database will completely initialize it. If the user has any other views

they will also have to be reinitialized as described earlier.

dbif : initialize !

initialize! simply initializes the database.

[Function]

SSM/PMAD Technical Reference
III-149

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

5.2 The Rule Management System

This subsection describes how to use the rule management system tool of the KSOUAn-

SSM/P_ADsystem. It assumes that the reader has some knowledge of expert systems, and

forward and backward chaining. The mechanism for specifying a knowledge base is first

presented. This is followed by a description of the rule group. The rule group methods are

then discussed, this includes the execution strategy of the rule group, the control strategy

and the conflict resolution strategy. Finally the semantics of rules are described. For more

technical information about the implementation and perhaps clarification of the discussion

here see [Riec] or [Rieb].

5.2.1 The Knowledge Base

Adding a knowledge base to the KNOMAD-SSM/PMAD rule management system must obey

fairly rigid syntax. A knowledge base consists of declaring the name of the knowledge

base, optionally specifying a domain file that defines the domain, the rule groups of the

knowledge base, optional further domain knowledge specific to the knowledge base, which

rule groups should begin execution, and finally an end symbol, the exact syntax is defined in

the KNOMAD-SSM/PMAD BNF Syntax appendix. The knowledge base generally looks like:

@_ Comments are given by using a '@' symbol. Everything to the end of

@@ line is regarded as comment.

@@ <kb-name> is simply a symbol representing the name of the knowledge base.

KB : <kb-name>

%0 The DOMAIN is optional, but if given, <domain file name> is a filename

@@ that will be loaded to load the domain. The file is loaded as a

Q% LISP file would be loaded using the load function.

DOMAIN : <domain file name>

@@ Rule groups may be directly specified by inserting them directly in the

@@ knowledge base definition. They may a/so be modularized by placing them

@@ in a separate file in .hich case the FILE keyword is used.

<rule group>

FILE : <rule group file name>

<rule group>

@@ Domain knowledge is optional and is used to specify further domain

@@ knowledge that is not appropriate in the domain file, but particular

@@ to the knowledge base. Domain knowledge consists of constants, facts,

V

SSM/PMAD Technical Reference
III-150

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

@@ and frames. Constants are specified by specifying symbols separated

@@ by semicolons. An example constant is 'true'. Defining a constant

@@ asserts a fact into the database that specifies that the constant's

¢@ value is the same as the constant. The constant 'true' would be

%@ asserted as: (fact true :value true).

@@ Facts are used to specify values for particular facts. Each fact

@@ is separated by a semicolon. An example fact could be:

@@ empty - ()

@@ This fact would be asserted into the database as: (fact empty :value ()).

_@ Finally, frames may also be specified. Frames are specified a little

@@ differently than constants and facts. To specify a frame simply put

%@ the LISP definitions for frames and their instances here. They are

_@ not separated by semicolons but they must be terminated by a period.

Q@ The frames will be read and evaluated by LISP directly.

Domain-Knowledge :

constants : <constants> .

facts : <facts>

frames : <frames>

_ Before the knowledge base is finished the rule groups that should

@@ be executed are specified. These are the names of the rule groups

@@ as in their specifications. None to any number may be executed

@@ in parallel for each knowledge base. If more than one are specified,

@@ they must all be on the same line as the begin statement.

Begin : <rule group names>

@@ Finally the end Symbol is given.

End-KB

One caveat to defining a knowledge base is that all symbols, including punctuation symbols,

must be separated by white space. The parser for KNOMAD-SSM/eMAD is a very simple

LL(1) (mostly) parser that uses a very primitive lexical analyzer.

Another caveat is that the rule management system operates in the rule-system package

of LISP. This means that any functions to be used by the rule groups, symbols in the

database, etc., all must be defined to exist (or be visible) in the rule-system package.

rule-system: Pparse-kb fide [Function]

This function is used to parse a knowledge base. The file must specify the filename where

the knowledge base is defined.

SSM/PMAD Technical Reference
III-151

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

rule-system: load-ka ka [Function]

rule-system:kill-ka ka [Function]

load-ka is exactly analogous to parse-kb. It expects a symbol representing the name

(pathname) of a knowledge base. It will simply call parse-kb.

kill-ka is used to kill a knowledge agent (which is simply a knowledge base). It is used

to stop a knowledge agent from executing and remove any hooks it has in the database.

5.2.2 The Rule Group

The rule group is used to specify a set of rules that are related to one another in some

fashion. The rule group consists of six basic parts as specified here:

@@ The first part of a rule group is its name.

RULE-GROUP : <rule group name>

@@ The rule group rules may be controlled using a transition graph

@@ of what rules follow what other rules. This control specification

@Q optional. See the FRAMES knowledge base for an example of using this.

CONTROL : <transition table>

@@ The control strategy for a rule group may also be specified here.

@@ If it is it should be the name of another rule group or a function

@@ that will be used as the control strategy for this rule group.

CONTROL-STRATEGY :

@@ The conflict resolution strategy is exactly analogous to the control

@@ strategy and is optional as well.
CONFLICT-RESOLUTION-STRATEGY :

@@ Finally the rules are given. Each rule is separated by a semicolon.

@@ The rules will be described shortly.

<rules>

@@ After the last rule a colon, optionally followed by a termination

@@ condition is specified. The termination condition is a regular

@@ rule condition and when it evaluates to true, the rule group is

@@ considered to be finished.

: <termination condition>

@@ If the rule group is specified in a separate file from the knowledge base

SSM/PMAD Technical Reference
III-152

Appendix IH

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

v

__...J

@@ the following must also be in the rule group as the last symbol.

DONE

The semantics of executing a rule group are given in the next section on rule group

methods. However, as an introduction the basic execution cycle will be described here for

context.

The idea behind a group of rules is to match those rules with data in the database, and

from the rules that are matched, select some of them and fire them. This is termed the

match-select-fire cycle. The match phase of expert systems is the most expensive. This

involves matching the left hand sides (LHS) of rules with data in the database and finding

those rules that are satisfied. From the resulting set, usually only one, but possibly more,

rule(s) are selected. This is the select phase, also called conflict resolution. Finally, those

rules that are selected are fired. Firing a rule means that the statements on its right hand side

(RHS) are asserted into the database. This cycle continues until the termination condition

(basically a LHS of a rule) is satisfied. This description is for a forward chaining expert

system. Backward chaining can (almost) be thought of as matching RHSs and asserting

LHSs. Basically, backward chaining involves trying to prove a goal, or a RHS. To do this,

one chains from LHSs to RHSs to find a set of LHSs that are satisfied and by which one

could then chain from those LHSs to the goal (RHS) of interest.

The rule group definition in KNOMAD-SSM/PMAD provides a lot of flexibility to this

model. Specifically, the user may specify how rules can be matched. In a generic expert sys-

tem, rules match non-deterministically. To get around this most developers put statements

into the rules themselves to sequence them properly. The control transition table allows a

user to specify up front how rules should be sequenced. The user may also specify different

control strategies and conflict resolution strategies for matching and selecting rules.

In the following discussion forward chaining will be assumed for clarity.

Rules are built out of selectors. A selector has the form [referee relation reference

]. The referee and reference are used for specifying database values. For example a

referee could be simply true or color of car-34, relation is used to specify how the

referee and reference are related to one another. For example, a relation could be = or <=.

When a selector is on the LHS of a rule it is generally used to ask if the referee is related to

the reference according to the relation. When a selector is on the RHS of a rule the referee

is being given the value of the reference according to the relation (in this case the relation

must be something that makes semantic sense, for example =).

Selectors may also be quantified. In a quantification, a symbol is bound to the result of

an expression and is used in the condition being quantified over. For quantified selectors, if

the selector is on the LHS of a rule, the selector is satisfied if the all the bindings are satisfied

for the quantified condition in the case of universal quantification, and if there exists one

binding which satisfies the quantified condition in the case of existential quantification. If the

selector is on the RHS, then either one assertion is done non-deterministicaUy for existential

SSM/PMAD Technical Reference
III-153

Interim
Appendix III Final Report MCR-89-516
SSM/PMAD Technical Reference Volume II July 1990

,J

quantification or, for universal quantification, all assertions are done.

At the next layer are the conditions. A condition is most simply made up of a set of

selectors. If on the LHS of a rule, all the selectors must be satisfied. If on the RHS, all

the selectors are asserted. Conditions may also be represented by two sets of selectors. The

second set either represents a disjunction with the first set or exceptions to the first set. If

a disjunction is represented then it is only semantically valid on the LHS of a rule. When a

set is used as exceptions then the first set must be satisfied and the exception set must not
be satisfied for the condition to be satisfied.

Finally rules are made up of a condition on the LHS and RHS of the rule. A rule may

be simple or complex. A complex rule is a quantified rule. In quantified rules a variable is

bound to the value of an expression but a sub-rule is quantified over instead of a condition.

The syntax of a rule is given in the appendix on the KNOMAD-SSM/PblAD syntax. It is

quite complex and perhaps the best way to understand it is in conjunction with the example

provided by the FRAMES expert system elsewhere in this document.

5.2.3 Rule Group Methods

The rule group is an object in the database and is specified as follows:

(frame :name rule-group

:slots ((rules :value nil)

(name)

(window)

(quantified-vats)

(rg-var)

(plan)
(plan-state)

(plan-table :value nil)

(viable-set :value nil)

(not-yet-viable-set :value nil) .

(fire-set :value nil)

(local-variables)

(rules-fired :value nil)

(conflict-set :value nil)

(tickle-set :value nil)

(satisfied-set :value nil)

(unsatisfied-set :value nil)

(cant-fire-set :value nil)

(fired-set :value nil)

(untickled-set :value nil)

(lhs-event)

SSM/PMAD Technical Reference
III-154

Appendix III
SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

(rhs-event)

(*lhs-tickled-queue* :value nil)

(*rhs-tickled-queue* :value nil)

(termination-condition :value nil)

(rules-vith-dyaamic-lhs-patterns :value nil)

(rules-with-dynamic-rhs-patterns :value nil)

(backtrack-stack :value nil)

(control-strategy :value #'default-control-strategy)

(conflict-resolution-strategy :value

'default-conf lict-resolution-strat egg)

(execute :value #_executel)

))

There are many slots to the rule-group definition. Not all of them are currently being used.

However, different parts of the execution of the rule group use different slots. The control

strategy and conflict resolution strategy are represented as slots on the rule group as well.

When a rule group is executed the following steps are carried out:

1. Initialize the rules of the rule group for execution.

2. Check the termination condition of the rule group. If the termination condition is

satisfied the rule group is done.

3. Use the control transition table of the rule group to determine what rules can be

matched next. If there is not transition table then all of the rules of the rule group are

eligible.

4. Find out which rules of the eligible set are satisfied using the control strategy.

5. Use the conflict resolution strategy to pick a subset of the rules to fire.

6. Fire the selected rules.

7. Loop to number 2.

It is possible to specify a new control strategy or conflict resolution strategy using separate

rule groups or user defined functions. However, it is not recommended that the user define

a strategy using a rule group for two reasons. One, it will be an order of magnitude slower.

Two, the semantics of rules are still being worked on and it may simply not work as expected.

One other caveat of the rule group execution is how the rule management system and

the database of KNoMAn-ssM/PMAD are connected. When data is asserted in the database,

if the data completes the satisfication of the LHS of some rule, that rule will be put on the

lhs-tiekled-queue slot of the rule-group frame. This slot is then used by the rest of the

execution methods to do forward chaining.

SSM/PMAD Technical Reference
III-155

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

5.2.4 Rule Semantics

The semantics of rules are important for writing rules. As stated above, there are two types

of rules, simple and complex. A simple rule has no quantification. A complex rule can have

either universal or existential quantification.

A simple rule may be fired once for each execution of a rule group. Once it has been fired

it will not be fired again. An existentially quantified rule also will only fire once. However,

a universally quantified rule will fire for each set of data that satisfies the rule.

Each time a rule group is executed the rules may be fired in this manner. These semantics

are not entirely appropriate for every application. For the FRAMES expert system there is a

place where some simple rules need to be fired multiple times. The way this is accomplished

is by resetting the fired slot of a rule at certain predictable places in the supporting code

for the expert system. The next major version of KNOMAD-SSM/PMAD will have the rule

semantics cleaned up so that any application ought to be semantically representable with

very little effort.

5.3 Adding Tools to KNOMAD-SSM/PMAD

The rule management system is one of the tools of the top layer of K N o MAD-SUM/PM AV.

Adding a tool to the KNOMAD-SSM/PMAD system involves properly integrating it with the

KNOMAD=SSM/PMAD database. Recall that the KNOMAD-SSM/PMAD database provides a

data-driven environment for the tools.Therefore, adding a tool requires adding hooks into

the assert: and retrieve! functions so that the new tool can be called with the new

changes.

The other aspect to consider is what parts of the new tool need to be a part of the

database. For example, the rulemanagement system has rulegroups as part of the database.

Rules are half in the database and halfout of the database (defined in a couple of different

ways). Generally,the purpose of putting part of the tool into the database isto allow what

the tool does to have self-reflexivityto some extent. For the rule system, this allows the

specificationof control strategiesand execution methodologies to be stated as rules by the

user.

These two considerations are the only important aspects of adding tools to K N OMAD-

SUM/PMAD. It is quite possible, that as this is done extensions to KNOMAV-SSM/PMAD will

be defined to help certain aspects of adding tools. For example, since the rule management

system is currentiy the 0nly tool at the top layer of KNOMAV-SSM/PMAD, it is quite possible

that the next tool added will want to use rules of the rule management system in some way.

The semantics of these types of operations have not yet been defined. It may be that tools

can use each other without modifications to KSOMAV-SSM/PMAD. However, it is likely that

some modifications will need to be performed.

SSM/PMAD Technical Reference
IH-156

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report
Volume II

MCR-89-516

July 1990

A Suggested Readings

There are a number of readings that may be useful to better utilize or understand the

SSM/PMAD Interface, FRAMES and KNOMAD-SSM/PMAD. These include SSM/PMAD

specific references as well as general Artificial Intelligence references.

The first interim final report for this project, [MJA*], as well as volume II are good for

understanding the SSM/PMAD in general. These reports talk a lot about how software

and hardware functions were implemented as well as specific functionality. IRMA] provides

a good description of how the SSM/PMAD implementation provides a number of control

loops for operating the power system hardware in an autonomous fashion.

For a general and fairly detailed introduction to Artificial Intelligence [CM] is recom-

mended. [Nil] is also a good reference to AI but is more formal. However, Niissons's book is

a much better book for an understanding of production systems and their semantics.

Two good papers that talk about frames {not the FRAMES expert system) are the

seminal paper by Minsky, [Min], and a paper by Hayes, [Hay].

The K N o Ma D-ssM/PM AD database is similar to the LINDA model of data and databases

but also quite different semantically. Gelernter, [CG], describes the syntax and semantics of

the LINDA model as well as how it can be used to solve parallel processing problems in a

conceptually elegant manner.

Finally, Charniak, Riesbeck, McDermott, and Meehan provide an accessible reference on

AI programming, [CRMM]. There is a lot of good material on data-driven methods, slot

and filler databases, production systems, etc.

B KNOMAD-SSM/PMAD BNF Syntax

B.1 Definitions

This appendix describes the syntax of KNOMAD using extended BNF notation. The mean-

ings of the meta-characters are given in the table.

Symbol Meaning

begin optional grouping

end optional grouping
alternative

-{- one or more

* zero or more

ID analogous to any LISP atom

STRING a string

NUMBER a number

SSM/PMAD Technical Reference
III-157

Appendix III
8SM/PMAD TechnicalReference

Interim

Final Report

Volume II

MCR-89-516

July 1990

B.2 Rule Management System

knowledge-base ::m KB : ID { DOMAIN : ID } rule-Eroup+ { domain-knowledge }

BEGIN : ID+ END-KB

rule-group ::= RULE-GROUP : ID

{ CONTROL : transition-table }

{ CONTROL-STRATEGY : control-strategy }

{ CONFLICT-RESOLUTION-STRATEGY : confllct-resolution-strategy }

{ RG-VAR : ID }

{ QUANTIFIED-VARS : q-vars }

rules

{ : termination-c_dition }

domain-knowledge ::= { CONSTANTS : constants

{ FACTS : facts . }

{ FRAMES : frames . }

control-strategy ::= FUNCTION IID

conflict-resolution-strategy ::ffi FUNCTION IID

termination-condition ::s condition

transition-table ::= ((ID (ID+))+)

q-vats ::- ID [ID , q-vars

constants ::- ID]ID ; constants

facts ::= fact I fact ; facts

fact ::- ID = ID IID - (IO*)

frames ::= frame+

frame ::- (FRAME :NAME ID

{ :PAREFrS parenCs }

{ :ISNEW FUNCTION }

{ :SLOTS ((ID aspect VALUE { aspect VALUE }*)*) })

parents ::- ID I (IO+)

SSM/PMAD Technical Reference
III-i58

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

aspect ::= :IF-NEEDED [:IF-ADDED [:CONSTRAINT [:MUSTBE [:VALUE [
: DISTRIBUTION

rules ::z rule [rule ; rules

rule ::- { condition } ::> rhs [

{ condition } quantifier ID IN expr { WHERE condition } < rule >

{ ELSE condition >

rhs ::= condition { ELSE condition } [{ ELSE condition }

quantifier ::- FOR ALL [THERE EXISTS

condition ::- selector+ { choice selector+ }

choice ::= EXCPT [OR

selector ::= [quantifier ID IN expr (WHERE condition } < condition > }] J

[expr { relation reference }]

relation ::-NOT MEMBFAIN [NOT UNIQUEIN [MEMBERIN [UNIQUEIN [

- I <> I >= I <= I > J <

reference ::z expr

expr ::-message [constant [path [expr op expr

constant ::= STRING] hIJMBER

op ::-PLUS [MINUS J UNION [TIMES [IDIV J RDIV J M0D

path ::- ID [ID OF path

message ::- path :: ID { (expr+) }

B.3 Frames

frame ::n (FRAME :NAME ID

{ :PARENTS parents }

{ :ISNEW FUNCTION }

{ :SLOTS ((ID aspect VALUE { aspect VALUE }*)*) })

SSM/PMAD Technical Reference
III-159

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report

Volume II

MCR-89-516

July 1990

parents ::- ID I (ID÷)

aspect ::- :IF-NEEDED I :IF-ADDED I :CONSTRAINT I :MUSTBE I :VALUE I

•DISTRIBUTION

B.4 Database Assertions

In the following, VALUE represents any object.

fact ::= (FACT ID :value VALUE)

frame ::- (FRAME ID slot aspect VALUE)

slot ::- ID

aspect ::= :IF-NEEDED I :IF-ADDED I :CONSTRAINT I :MUSTBE I :VALUE I

:DISTRIBUTION

B.5 Integrity Constraints

i-constraint ::- (itam÷) IID

item ::- i-constraint I type-decl I type-spec

type-dec1 ::- (:type-dec1 ID)

type-spec ::- (:type-spec ID)

References

[And]

[CG]

[CM]

Paul Anderson. Space Station Common Module Network Topology and Hardware

Development. Contract No. NAS8-36583 Final Report MCR-90-536, Martin Ma-

rietta, July 1990.

Nicholas Carriero and David Gelernter. Linda in context. Communications of the

ACM, 32(4), 1989.

Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence.

Addison-Wesley Publishing Company, 1985.

-" L- ::- -.......

SSM/PMAD Technical Reference
III-160

Appendix III

SSM/PMAD Technical Reference

Interim

Final Report MCR-89-516

Volume II July 1990

[CRMMI

[Hay]

[Min]

[MJA*]

[Nill

[Pae4

[Rieb]

[Riec]

[RMA]

Eugene Charniak, Christopher K. Riesbeck, Drew V. McDermott, and James R.

Meehan. Artificial Intelligence Programming. Lawrence Erlbaum Associates, Pub-

lishers, second edition, 1987.

P.J. Hayes. The logic of frames. In B.L. Webber and Nils J. Nilsson, editors,

Readings in Artificial Intelligence, pages 451--458, Morgan Kaufmann, 1981.

M. Minsky. A framework for representing knowledge. In P. Winston, editor, The

Psychology of Computer Vision, pages 211-277, McGraw-Hill, 1975.

W. Miller, E. Jones, B. Ashworth, J. Riedesel, C. Myers, K. Freeman, D. Steele,

R. Palmer, R. Walsh, J. Gohring, D. Pottruff, J. Tietz, and D. Britt. Space Station

Automation of Common Module Power Management and Distribution. Technical

Report Contractor Report 4260, NASA, November 1989.

Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1980.

Joel D. Riedesel. Diagnosing multiple faults in ssm/pmad. In Proceedings of the

25th Intersociety Energy Conversion Engineering Conference, 1990.

Joel D. Riedesel. Knowledge Management: An Abstraction of Knowledge Base

and Database Management Systems. Technical Report Contractor Report 4273,

NASA, January 1990.

Joel D. Riedesel. Knowledge management: an abstraction of knowledge base and

database management systems. In Proceedings of the Fifth Annual AI Systems in

Government Conference, 1990.

Joel D. Riedesel, Chris Myers, and Barry Ashworth. Intelligent space power au-

tomation. In Proceedings of the Fourth IEEE International Symposium on Intelli-

gent Control, 1989.

SSM/PMAD Technical Reference
III-161

AppendixIV
SSM/PMADLLP VCI.Rs

Interim

Final Report

Volume 11

MCR-89-516

July 1990

LLP Main Program Revision 3.0

!Initialize Ethemet
Pre-loop Initialize
Initialize Clock
Initialize Switches

Determine Configuration
Initialize Switch Range and Redundancy
Initialize Sensor Range
Initialize Switch Conversion Constants
Initialize Sensor Conversion Constants
Infinite !09P _ True
While Infinite_loop Do

_,, Ready. to
Initialization Module

initialize?
Null

Initialized?
Schedule Module
Get Data Module
Convert Data Module
Compute Performance Module
Algorithms Module
Null

Ethernet Input Module
i ,,i

Messa_ze?

Ethemet Output Module
Mission Start-'-.

Initialized -"-

Null

Null

((Time_List) .AND.
(Current Time .GT. 0))

((Event_List) .AND.
(Mission_Start))

SSM/PMAD LLP VisualControlLogic Representations

IV-1

AppendixIV

SSM/PMAD LLP VCLRs

Int_6.m

Final Report

Volume II

MCR-89-516

July 1990

Initialization Module Revision 3.0

Initialize Switches

V

Pre-loop Initialize
Init list's---- True
Initialize Performance Tables
Initialize Switch Range and Redundancy
Initialize Sensor Range
Get Data (initial data set)
Convert Data (initial data set)
Message 4--- True
Setup Switch Conversion Constant List
Setup A/D Conversion Constant List
Setup Switch/Sensor Configuration List

V

1

SSM/PMAD LLP Visual Control Logic Representations

IV-2

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report MCR-89-516

Volume II July 1990

Schedule Module Revision 3.0

Clear Contingency _ False

\((New_Priority_List) .AND.
(New Priority Time > Current_Time))?A_

Null
i

Enable New Priority List I

_New_Event_List) .AND. I

(New Event Time > CurrentTime))? /_nl
Enable New Event List

i i

Set MaxEvent Null
Clear Contingency _ True

While ((Current_Event .LE. MaxEvent) .AND.

(Current Event Time .LE. Current_Time)) Do
Process Event
Increment Current Event

Clear Contingency ,/_i
Contingency _ False I Null

SSMIPMAD LLP Visual Conlrol Logic Representations

IV-3

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report

Volume II

MCR-89-516

July 1990

Process Event Revision 3.0

Determine SIC (Based,on switch number)

Setup Switch Command
Determine if Switch is Held

Determine Type of Event
Iv\ ((Not Held) .OR. (Contingency_O0))?

NullExecute Event I .
Setup Switch Perform.ance hst

V\ - Fault Test?
-Check For Trips] Null

/n

MJ

SSM/PMAD LLP Visual Control Logic Representations _

IV-4

AppendixIV

SSM/PMAD LLP VCLRs

Interim

Final Report

Volume II

MCR-89-516

July 1990

Get Data Module Revision 3.0

yNx SIC A, Present?

Send Switch Data Request to SIC A
Read SIC A Response
Time Stomp SIC A Response
y\ SIC B Present?
Send Switch Data Request to SIC B
Read SIC B Response
Time Stamp SIC B Response
y\ Sensors Available?

Send Sensor DataRequest to Sensor SIC
Read Sensor SIC Response
Time Stamp Sensor SIC Response _

A

Null

Null

/n

Null

SSM/PMAD LLP Visual Control Logic Representations

W-5

Appendix IV

SSM/PI_r_D LLP VCLRs

Interim

Final Report

Volume II

MCR-89-516

July 1990

Convert Data Module Revision 3.0

SIC A Present?
Do for all switches on SIC A

Record Trip Data
Switch to Redundant

Switch Tripped? ,/n
Convert Switch Current

i

/4a Null
Null

y\ New Trip?
Setup Switch
Perf. Send

yN SIC B Present?

Null

/n
Do for all sw,itches on SIC B

Record Trip Data
Switch to Redundant

Switch Tripped? /n
Convert Switch Current

v_ New Trio?

Setup Switch Null
Perf. Send

DO

Null

Sensors Available?
for 'all Sensors

Convert Sensor Data

y_ New Trip Info?
Setup Switch Message
Setu.p Sensor Messajze
Setup Switch Performance Message
Message _True

Null

/n
m

Null

/n

Null

111

SSM/PMAD LI_-_risual Control Logic Representations :

IV-6

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report MCR-89-516

Volume II July 1990

"-,.__t-

Compute Performance Module Revision 3.0

New Sensor Performance .Interval?
Start Time'_t----End Time

|*

Do for all sensors Null
Reset Vdc / Idc / Power Statistics
Reset Energy Consumed
Delta Tim..e 4-- Sensor Time - End Time

Do for all sensors
Update Vdc /Idc /Power Statistics
Uodate Energy Consumed

Do-for a!! switches
New Switch Performance Interval? /n

Start Time _ End Time
Reset Current (Amperage) Statistics
Delta Time "_----.SIC Time- End T..ime
Uodate Current (Ampera_ze) Statistics

Null

SSM/PMAD LLP Visual Control Logic Representations

W-7

Appendix IV

SSM/PMAD LLP VCLRs

Algorithms

Interim

Final Report

Volume II

Module Revision 3.0

MCR-89-516

July 1990

y\ Sensors Present?
Do for all Sensors

R_ge Check Sensor Readings
SIC A Exists?

A
Null

n

Do for all Switches on SIC A
vX,Time to Send Switch Performance Data?/6

Setup Switch Performance Send Null Nul]
v\ Current out of Profile Limits? /6

Setup Fault Message Null
y\ SIC B Exists? /n
Do for all Switches on SIC B

v\Time to Send Switch Performance Data?
Setup Switch Performance Send Null

,y_, Current out of Profile Limits? /n
Setup, Fault Message Null

Soft Fault Module

Null

SSM_MAD LLP Visual Control Logic Representations _ _"

IV-8

AppendixIV
SSM/PMADLLP VCLRs

Interim

FinalReport

Volume II

MCR-89-516

July 1990

Soft Fault Module Revision 3.0

i

Y\ LLP controls
Compute Kirchoffs
Current Law Sum

for SIC A (KCLsum)

_(KCLsum) .GT.
(Tolerance))?/_n

Soft Fault _---True INull !

Sensors are Present?
a Load Center /n
Compare Sensor 0

with Sens.or 1
_\ Comparable? /n
Soft Fault._---Truei Null
Do for Num 4---2 to 7

Compare Sensor Num
Compute KCLsum with Switch Num

for SIC B v_ Comparable_ /_
\ ((KCLsUm) .GT. Soft Fault_-TruelNull !
9',, (Tolerance))? _n Compute KCLsum

Soft Fault.4----True[Null \ ((KCLsum) .GT.
Null yN (Tolerance))? _n

Soft Fault.4---TruelNull
Soft Fault?

Message _----True
ill

Setup,,Soft Fault Message
Null

/n

Null

SSM/PMAD LLP Visual Control Logic Representations

IV-9

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report

Volume H

MCR-89-516

July 1990

Ethernet Input Module Revision 3.0

, Check for broken conne,,ction
i Y_ Broken? A_i

Re-establish Connection
Transaction 4--- (Ethemet,,,Buffer
While Transact,ion Do

Null

.NE. Empty)

Read Triansactiqr_
• Event list:

Process Event list
Contingency "4--- False
Event List 4---- Tr0¢

• Priority list:
O0

o Process Priority list
,_ Prio List _True

• Time list:

Set System TimeTime L!st _ True
• Contingency Event list:

Process Event list

Contingency _ True
• Swntch Control list:

Execute Switch Control list
• Switch Conversion Constant list:

Process Switch Conversion Constant list
• A/D Conversion Constant list:

Proces_ A/D Cgnversion Constant list
• Initialization list:

R¢_dv to initialize'#---True
• Ouery list:

Process Quer3; li_t
Transaction _ (Ethemet Buffer .NE. Empty)

SSM/PMAD LLP Visual Control Logic RepresentatiOnS"

W-IO

_J

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report MCR-89-516

Volume H July 1990

Process Event List Revision 3.0

yXx Initial Event List? /ill
Enable New Event List [Enable Future Event List [

Null]NewEventList .#--True I

SSM/PMAD LLP Visual Control Logic Representations

IV-1 1

Apl_ndix IV
SSM/PMADLIP VCLRs

Interim

Final Report

Volume II

MCR-89-516

July 1990

Process Priority List Revision 3.0

1_ Initial Priority List?
]Enable New Priority List _nable Future Pri.'orirv Lis_

Null [New Priorit-v Llst'_ TruelI

V

SSM/PMAD _Visual Control Logic RepresentationS'

IV-12

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report

Volurnc II

MCR-89-516

July 1990

Set System Time Revision 3.0

Convert Start of Mission Day
Convert Start of Mission Month
Convert Start of Mission Year

Store Start of Mission Date
Convert Start of Mission Hour
Convert Start of Mission Minute
Convert Start of Mission Second
Store Start of Mission Time

Convert Present Day
Convert Present Month
Convert Present Year

Set Operating System Date
Convert Present Hour
Convert Present Minute
Convert Present Second

Set Operating System Time

SSM/PMAD LLP Visual Control Logic Representations

W-13

Appendix IV

SSM/PMAD LLP VCI_,Rs

Interim

Final Report

Volume II

MCR-89-516

July 1990

Execute Switch Control List Revision 3.0

Done _ False

While (Not Done) Do
Process Event
Increment Event Number
vN

yN
Done _ True

(Status is Normal and Fa,ult Isolation List)? /n
Null Done _ True

Set Switch Number
Last event in Switch Control ,List?

Null

Message _ THe
Get Data
Convert Data

_o Initialized?mpute Performance Null
/n

M.¢

11

SSM/PMAD LLP Visual Controil._gic R_senmff_ _-=

IV-14

Appendix IV

SSM/PMAD LLP VCLRs

Interim

Final Report

Volume I1

MCR-89-516

July 1990

Ethernet Output Module Revision 3.0

/n
Null

',_.j

Connection Broken?

Re-establis, h connection
9,, Connection Broken? n

y_ Switc. h Message?
Send Switch Status

A
Null

I

Null

Sensor Message? _z/n
Send Sensor Status Null

Temperature Message? /fi
Send Temperature Sensor Status Null
v_ Switch performance Me.s.sa.ge? /6
Send Switch Performance Null
v_x Sensor performance Message? ,/6
Send Sensor Performance Null
v\ Switch Configuration.Constants Message?/_
Send Switch Configuration Constants Null
V\ Sensor Configuration Constants Messa_e?/_
Send Sensor C.onfiguration Constants Null
y\ Configuration Message? /_a
Send Configuration I Null

SSM/PMAD LLP Visual Control Logic Representations

IV-15

V

Appendix V

SSM/PMAD LLP/FRAMES ICY)

Interim

Final Report MCR-89-516

Volume II July 1990

Initialization List -

Direction - FRAMES to LLP

Description - An initialization list is sent to the LLP during initial startup or when the

automation system wishes to reinitializc.

FIELD

LLP Designator

LENGTI-I FORMAT DESCRIPTION

2 Alphanumeric Which LLP - 'A' to 'H'

)_

SSM/PMAD LIP/FRAMES Interface Control Document

V-1

Appendix V

SSM/PMAD LLP/FRAMES ICD

I iiii

Time List-

Direction - FRAMES to LLP

Interim

Final Report

Volume II

Description - Time synchronization message for distributed software system.

MCR-89-516

July 1990

FIELD LENGTH

Month Now 2

Day Now 2

Year Now 2

Hour Now 2

Minute Now 2

Second Now 2

SOM Month 2

SOM Day 2

SOM Year 2

SOM Hour 2

SOM Minute 2

SOM Second 2

FORMAT

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

DESCRIPTION

Calendar/clock month

Calendar/clock day

Calendar/clock year

Calendar/clock hour

Calendar/clock minute

Calendar/clock second

Start of Mission month

Start of Mission day

Start of Mission year

Start of Mission hour

Start of Mission minute

Start of Mission second

V

SSM/PMAD LLP/FRAM_ Interface Control Document

V-2

AppendixV
SSM/PMADLLP/FRAMESICD

Interim

FinalReport
Volume1I

MCR-89-516

July 1990

Event List -

Direction - FRAMES to LLP

Description - A list of events from the Load Enable Schedule for operation of the

breadboard.

FIELD LENGTH FORMAT

Effective Time 6 Numeric

Number of Events 2 Packed79

DESCRIPTION

Effective time of the event list

Number of Events

EVENT 19

Ttme of Event 6

Component 3

Event 1

Type of Event 1

Redundancy 1

Switch to Redundant 1

Maximum Current 3

Minimum Current 3

GROUP AN EVENT DESCRIVI'OR

Numeric Time event is to be initiated

Alphanumeric Identity of component

Alphanumeric F-off, N-on, C-change

Alphanumeric Always N-Normal

Alphanumeric Y-Redundant, N-Not Redundant

Alphanumeric Y-Permission, N-No Permission

Numeric (0-999) deciAmps

Numeric (0-999) deciAmps

SSM/PMAD LLP/F'RAMES Interface Control Document

V-3

Appendix V

SSM/PMAD LLP/FRAMES ICD

Priodty List -

Direction- FRAMES to LLP

Interim

FinalRclxa't MCR-89-516

Volume II July 1990

Description - Relative Switch Priority list for switches in an LLP.

FIELD LENGTH

Effective Time 6

Number of Components 2

Component 3

FORMAT DESCRIPTION

Numeric Effective time of the priority list

Packed79 Number of components

Alphanumeric Identity of component

<

SSM/PMAD LLP/FRAMES Interface Control Document

V-4

Appendix V

SSM/PMAD LLP/FRAMES ICE)

Interim

Final Report

Volurr_ II

MCR-89-516

July 1990

Contingency Event List -

Direction - FRAMES to LLP

Description - A new Event List sent in response to a contingency situation.

FIELD LENGTH FORMAT

Effective Time 6 Numeric

Number of States/Events 2 Packed79

DESCRIPTION

Effective time of the event list

Number of (States + Events)

w_...j

STATE 19 GROUP

"Fm_ of Event 6 Numeric

Component 3 Alphanumeric

Event 1 Alphanumeric

Type of Event 1 Alphanumeric

Redundancy 1 Alphanumeric

Switch to Redundant 1 Alphanumeric

Maximum Oarent 3 Numeric

Minimum Current 3 Numeric

EVENT 19

Tmae of Event 6

Component 3

Event 1

Type of Event 1

Redundancy 1

Switch to Redundant 1

Maximum Otrrent 3

Minimum Ctm'ent 3

A STATE DESCR.ItrrOR

Always 000000

Identity of component

F-off, N-on, C-change

N - Normal, M-Manual

Y-Redundant, N-Not Redundant

Y-Permission, N-No Permission

(0-999) deciAmps

(0-999) decLAmps

GROUP AN EVENT DESCRIPTOR

Numeric

Alphanumeric

Alphanumeric

Alphanumeric

Alphanumeric

Alphanun'_'ic

Numeric

Numeric

Time event is to be initiated

Identity of component

F-off, N-on, C-change

Always N-Normal

Y-Redundant, N-Not Redundant

Y-Permission, N-No Permission

(0-999) deciAmps

(0-999) deciAmps

irll|m

SSM/PMAD LLP/FRAMES Interface Control Document

V-5

AppendixV
SSM/PMADLLP/FRAMESICY)

Interim

Final Report MCR-89=516

Volume II July 1990

Switch Control List -

Direction- FRAMES to LLP

Description - A switch command list which is executed immediately. This list is used for

immediate source reduction load shedding, fault isolation switch

manipulation, and manual intervention.

FIELD LENGTH FORMAT

Effective Time 6 Numeric

Number of Events 2 Packed79

DESCRIPTION

Effective time of the event list

Number of Events

V

EVENT 19 GROUP

Time of Event 6 Numeric

Component 3 Alphanumeric

Event 1 Alphanumeric

Type of Event 1 Alphanumeric

Redundancy 1 Alphanumeric

Switch to Redundant 1 Alphanumeric

Maximum Ctm'ent 3 Numeric

Minimum Current 3 Numeric

AN EVENT DESCRIPTOR

Not Used

Identity of component

F-off, N-on, C-change

F-Fault Isolation

H-Hold until Contingency List

M-Manual Control

R-Release Manual Control

Y-Redundant, N-Not Redundant

Y-Permission, N-No Permission

(0-999) deciAmps

(0-999) deciAmps

SSM/PMAD LLP/FRAMES Interface Control Document

V-6

x.../

Appendix V

SSMIPMAD LLP/FRAMES ICE)

Interim

FinalReport MCR-89-516

Volume H July 1990

Switch Conversion Constants List -

Direction- FRAMES to LLP

Description - A switch conversion constant list allows the user to tweak the conversion

constants used for determining amperage through an RPC. (RBIs presently

do not have amperage sensors.)

FIELD LENGTH FORMAT

Number of Constants 4 Integer

DESCRIPTION

No. of new switch conversion

constants

CONSTANT 11

Component 3

Slope 4

Intercept 4

GROUP CONSTANT DESCRIPTOR

Alphanumeric Identity of switch getting new

conversion constants

Integer Value in gAmps

Integer Value in gAmps

SSM/PMAD LLP/FRAMES Interface Control Doctamnt

V-7

AppendixV

SSM/?MAD LLP/FRAMES ICD

Interim

Final Report MCR-89-516

Volume 11 July 1990

A/D Sensor Conversion Constants List -

Direction - FRAMES to LLP

Description - An A/D sensor conversion constant list allows the user to tweak the

conversion constants used for determining amperage, voltage, and temperature through a

given sensor set.

FIELD LENGTH FORMAT

Number of Constants 4 Integer

DESCRIPTION

No. of new sensor set conversion

constants

CONSTANT 35 GROUP

Component 3 Alphanumeric

I-Slope 4 Integer

I-Intercept 4 Integer

V-Slope 4 Integer

V-Intercept 4 Integer

P-Slope 4 Integer

P-Intercept 4 Integer

T-Slope 4 Integer

T-Intercept 4 Integer

CONSTANT DESCRIFFOR

Identity of sensor set getting new

conversion constants

Value in mAmps

Value in mAmps

Value in reVolts

Value in reVolts

Value in mWatts

Value in mWatts

Value in mDegrees

Value in mDegrees

ruullllll

SSM/PMAD LLP/FRAMES Interface Control Document

V-8

Appendix V

SSM/PMAD LLPNRAMES ICD

Interim

Final t:__port MCR-89-516

Volume II July 1990

x.._../

Query List-

Direction- FRAMES to LLP

Description - A query list may be sent to the LLP to ask for switch status, sensor status,

temperature sensor status, configuration data, switch conversion constant

data, or sensor conversion constant data.

FIELD LENGTH FORMAT

Query type 1 Alphanumeric

Component 3 Alphanumeric

DESCRIPTION

A-A/D Conversion Constants

C-Configuration

F-Offgoing Switch Status

N-Ongoing Switch Status

Q-Quiescent State Request

R-Switch Status

S-Sensor Status

T-Temperature Sensor Status

W-Switch Conversion Constants

Only used for Query type 'F', _N'

SSM/PMAD LLPNRAMES Interface Control Document

V-9

Appendix V

SSM/PMAD LLP/FRAMES ICD

Interim

FinalReport MCR-89-516

Volume H July 1990

Switch Status List -

Direction - LLP to FRAMES

Description - A switch status list is sent to FRAMES when a fault occurs and also in

response to a query or switch command list. In addition, this list is sent to

FRAMES whenever a switch changes position.

FIELD L_NGTH FORMAT

Switch number 4 Integer

Anomalous 1 Alphanumeric

LLP_Flags 4 Integer

bit0 bit

bit 1 bit

bit 2 - bit 31 bit

Number of switches 4 Integer

DESCRIPTION

Used in fault isolation only

Y-Any fault or warning set

N-All OK (nothing set)

Bit Defined

Quiescent

Acknowledge

Not Used

Number of switches

SWITCH STATUS 18 GROUP

Switch component 4 Integer

Switch position 1 Alphanumeric

Switch hold type 1 Alphanumeric

Status word 4 Integer

bit0 bit

bit 1 bit

bit 2 bit

bit 3 bit

bit4 bit

bit 5 bit

bit 6 bit

bit7 bit

bit 8 bit

bit9 bit

bit 10 bit

bit 11 bit

.......... F 7 Fi -i

SWITCH STATUS DESCRIPTOR

Identity of switch

F-off, N-on, T-trip'd, U-Unavailable

N-Normal, M-Manual, H-Contingncy

Bit Defined (True ff set)

Anomalous flag

Surge Current Trip

Over Current Trip

Under Voltage Trip

Ground Fault Trip

Over Temperature Trip

Fast Trip

Already tripped flag

Already on flag

Already off flag

Not Used

Not Used

SSM/PMAD LLP/FRAMES Interface Control Document

V-lO

V

Appendix V

SSM/PMAD LLP/FRAMES ICY)

Interim

Final Report

Volume II

MCR-89-516

July 1990

bit 12

bit 13

bit 14

bit 15

bit 16

bit 17

bit 18

bit 19

bit 20

bit 21

bit 22 - bit 31

Amperage

Trip Tag

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

4 Integer

4 Integer

SIC not present flag

Generic Card not present flag

Not enough power available flag

Could not schedule flag

Switched to Redundant flag

Switch has been shed flag

Unable to Command flag

Current Ovetrange flag

Out of Current limits flag

Over Temperature warning flag

Not Used

Current through switch (dAmps)

0 - Ignore

Number-Number of Trip for LLP

SSM/PMAD LLP/FRAMES Interface Control Doem_nt

V-11

Appendix V

SSM/PMAD LLP/FRAMES ICD

Sensor Stares List -

Direction - LLP to FRAMES

Interim

Final Report MCR-89-516

Volume II July 1990

Description - A sensor status list is sent to FRAMES when a fault occurs and also in

response to a query list. In addition, this list is sent to FRAMES on a

temporal basis.

FIELD I.ENGTH FORMAT

Number of sensor sets 4 Integer

DESCRIPTION

Number of sensor sets

SENSOR SET

Sensor set component

Amperage

Voltage

Power

State

bit 0

bit 1

bit 2

bit 3 - bit 31

2O

4

4

4

4

4

GROUP

Integer

Integer

Integer

Integer

Integer

bit

bit

bit

bit

SENSOR SET DESCRIPTOR

Identity of sensor set

Amperage reading (dAmps)

Voltage reading (Volts)

Power _ng (Watts)

Bitdcfmcd

Amperage out ofRange

Voltage outof Range

Power out of Range

Not Used

SSM/PMAD LLP/FIL_MES Interfac_ Control Document

V-12

AppendixV

SSM/PMAD LLP/FRAMESiCl

Interim

Final Report

Volume II

MCR-89-516

July 1990

Temperature Sensor Status List -

Direction - LLP to FRAMES

Description - A temperature sensor status list is sent in response to a query list.

FIELD LENGTH FORMAT

Number of temperature sets 4 Integer

DESCRIPTION

Number of temperature sets

TEMPERATURE SET 8

Temperature set component 4

Temperature 4

GROUP

Integer

Integer

TEMPERATURE SET

DESCR/FFOR

Identity of temperature set

Temperattne reading (degrees)

SSM/PMAD LLP/bRAMF.S Interface Control Document

V-13

Appendix V

SSM/PMAD LLP/FRAMES ICD

Switch Performance List -

Direction - LLP to FRAMES

Interim

Final Report MCR- 89-516

Volume II July 1990

Description - A switch performance list is sent to FRAMES whenever a switch changes

position and on a temporal basis.

FrELD LENGTH FORMAT

Number of switches 4 Integer

DESCRIPTION

Number of switches

AMPERAGE DATA 28 GROUP

Component 4 Integer

Start time 4 Integer

End time 4 Integer

Average currem 4 Integer

Maximum current 4 Integer

Minimum cm'rent 4 Integer

Maximum time 4 Integer

Minimum time 4 Integer

A SWITCH PERFORMANCE

DESCRIFrOR

Identity of Switch

Start of Pcrformance Interval (sec)

End of Performance Interval (scc)

Time based averaged current (dAmps)

Maximum interval current (dAmps)

Minimum interval ctment (dAmps)

Time of Max. current reading (sec)

Time of Mitt. current reading (scc)

• i _.T. IZ_ : L L±: .. Y:LL _.

iiimll

SSM/PMAD LLP/FRAMES Intezfac. Control Document

V-14

Appendix V

SSM/PMAD LLP/FRAMES ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

Sensor Performance List -

Direction - LLP to FRAMES

Description - A sensor performance list is sent to FRAMES on a temporal basis.

FIELD LENGTH FORMAT

Start time 4 Integer

End time 4 Integer

Number of sensors 4 Integer

DESCRIPTION

Start of performance interval (sex)

End of performance interval (sec)

Number of sensors

SENSOR 40 GROUP

Average Voltage 4 Integer

Maximum Voltage 4 Integer

Minimum Voltage 4 Integer

Average Current 4 Integer

Maximum Current 4 Integer

Minimum Current 4 Integer

Average Power 4 Integer

Maximum Power 4 Integer

Minimum Power 4 Integer

Energy Consumed 4 Integer

SENSOR PERFORMANCE

DESCRIFFOR

Time based average voltage (Volts)

Maximum interval voltage (Volts)

Minimum interval voltage (Volts)

Time based average current (dAmps)

Maximum interval current (dAmps)

Minimum interval current (dAmps)

Time based average power (Watts)

Maximum interval power (Watts)

Minimum interval power (watts)

Energy Consumed (Watt - Hours)

SSM/PMAD LLP/FRAMES Interface Control Document

V-15

Appendix V

SSM/PMAD LLP/FRAMES ICD

i

Switch Conversion Values List-

Direction-LLP toFRAMES

Interim

Final
Volume II

MCR-89-516

July 1990

Description-A switchconversionconstantlistallowstheusertosee thepresentvaluesof

theconversion constantsused fordeterminingamperage through an RPC.

(P,BIs presentlydo not have amperage sensors.)

FIELD LENGTH FORMAT

Number of Constants 4 Integer

CONSTANT 12 GROUP

Component 4 Integer

Slope 4 Integer

Intercept 4 Integer

DESCRIPTION

No. of new switch conversion

constants

CONSTANT DESCRIPTOR

Identity of switch getting new

conversion constants

Value ingAmps

Value ingAmps

KJ

t • - -- --

SSM/PMAD LLP/FRAM_ Interface Control Document

V-16

Appendix V

SSM/PMAD LLP/FRAMES ICY)

Interim

FinalReport MCR-89-516

Volun_ II July 1990

A/D Sensor Conversion Values List -

Direction - LLP to FRAMES

Description - An A/D sensor conversion constant list allows the user to see values of the

conversion constants used for determining amperage, voltage, and temperature through a

given sensor set.

FIELD LENGTH FORMAT

Number of Constants 4 Integer

DESCRIPTION

No. of new sensor set conversion

constants

CONSTANT 36 GROUP

Component 4 Integer

/-Slope 4 Integer

I-Intercept 4 Integer

V-Slope 4 Integer

V-Intercept 4 Integer

P-Slope 4 Integer

P- Intercept 4 Integer

T-Slope 4 Integer

T-Intercept 4 Integer

CONSTANT DESCRIVI'OR

Identity of sensor set getting new

conversion constants

Value in mAmps

Value in mAmps

Value in reVolts

Value in reVolts

Value in mWatts

Value in mWatts

Value in rnDegrees

Value in mDegrees

SSM/PMAD LLP_ Interface ControlDoctunent

V-17

AppendixV

SSM/PMAD LLP/FRAMES ICD

Switch / Sensor Configuration List -

Direction - LLP to FRAMES

Description - This list tells the requestor the configuration of the LLP. This list is sent

during initialization and in response to a query list.

Interim

FinalReport MCR-89-516

Volume II July 1990

FIELD LENGTH

Sensors Available 1

Number of switches 4

FORMAT DESCRIPTION

Alphanumeric Y-Available, N-Not available

Integer Number of switches

SWITCH 6 GROUP SWITCH DESCRIPTOR

Switch Number 4 Integer Identity of switch

Switch type 1 Alphanumeric 1-1 kW RPC,

3-3 kW RPC,

R-RBI

U-Unavailable

S-Unavailable (SIC) *

Switch Position 1 Alphanumeric F-off,

N-on,

T-Tripped,

U-Unavailable

V

*Switch type will be set to 'S' only for switch number 0 or 14 if the SIC is unavailable on

Bus A or Bus B respectively.

SSM/PMAD LLP/FRAMF..S Interface Control Document

V-18

AppendixV
SSM/PMADLLP_S ICY)

Interim

Final Report MCR-89-516

Volume II July 1990

Quiescent Status Message -

Direction - LLP to FRAMES

Description - This message is used to inform FRAMES of a fault in progress at the LLP

software level. This message is also sent in response to a quiescent query

when the LLP software has reached a quiescent state.

FIELD LENGTH FORMAT

Quiescent Status 1 alphanumeric

DESCRIPTION

T - LLP has reached quiescent

state.

F - LLP has a fault in

progress.

SSM/PMAD LLP/FRAMF__ Interface Control Document

V-19

AppendixVI

SSM/PMAD LIP/SIC ICD

Interim

Final Report MCR- 89-516

Volume II July 1990

Revision E of this Interface Control Document reflects the changeover to the

new Intcl based LLPs. Since Motorola and Intel store 16 Bit words in memory differently,

this Interface Control Document had to bc revised to reflect the difference. Anywhere the

Switchgcar Interface Card returned a 16 Bit word, the ICD has been changed to show the

reversal of the high and low bytes. The only other change from revision D is the

lkW/3kW determination for DC RPCs in a standard switchword.

i

SSM/PMAD LLP/SIC Interface Control Document

VI-1

AppendixVI

SSM/PMAD LLP/SIC ICD

Interim

FinalReport MCR-89-516

Volume II July 1990

The following are SIC (Switchgear Interface Card) to LLP (Lowest Level

Processor) commands, formats, and expected responses. The COMMANDS are messages

from the LLP to the SIC. The RESPONSE is the actual data returned from the SIC in

response to a command. The LLP will wait for a RESPONSE from the SIC after each

command is sent. If no RESPONSE is received within 2 seconds, the SIC card will be

considered nonfunctional. All COMMANDS sent to the SIC card will end with a CR

(Carriage Return) which flags end of transmission to the firmware on the MVME331 card

(intelligent communications controller). All RESPONSES from the SIC will also end with

a CR for the same reason. The MVME331 card removes the CR before transmission from

the SIC to LLP and from the LLP to the SIC.

The dip switch configuration for SIC is as follows:

Switch 1 -switchopen (off)-bit0high

Switch 2 -switchopen (off)-bitlhigh

Switch 3 -switchopen (off)-bit2high

Switch 4 -switchopen (off)-bit3high

The SIC port configuration is as follows:

Baud rate - 9600

Data bits - 8

Stop bits- 1

Parity - even

V

........ _ ._C_ ._. _ "r_ _

SSM/PMAD LLP/SIC InterfaceControlDocument

VI-2

AppendixVI

SSM/PMAD LLP/SIC ICD

Interim

Final Report MCR-89-516

Volume II July 1990

Status Format:

* bym 1 * bym2 * byte3 * byte4 *

where: bytel

byte2

-> $30 -- status OK
-> $31 -- status NOT OK

-> cc -- copy of command received
with MSB bit always set to 1

byte3 -> $80 -- status OK

-> $FF -- unknown command

-> $81 -- first byte not a command byte

-> $82 -- did not receive first data byte

-> $83 -- fit-st data byte msb not high

-> $84 -- did not receive second data byte

-> $85 -- second data byte msb not high

-> $86 -- switch already on

-> $87 -- switch already tripped when

tried to turn it on

-> $88 -- switch already off

-> $89 -- switch already tripped when

tried to turn it off

-> $8A - GC Data Valid error when

getting switch data

NOTE: If the following statuses are received, do not 'download' switch

settings

-> $8B -- continous buffer overflow

(reset eontinous buffer)

-> $8C - once buffer overflow

(redo once buffer)

SSM/PMAD LLP/SIC Interface Control Document

VI-3

AppendixV1

SSM/P_ LLP/SIC ICD

Interim

FinalReport MCR-89-516

Volume n July 1990

NOTE: If the following statuses are received, the SIC card must be reset

or must use the redundant SIC

-> $A1 - SIC character buffer overrun

-> $A2 -- character overwritten (OE)

-> $A4-- parity error from UART (PE)

-> $A6 - OE and PE

-> $A8 -- framing error (FE)

-> $AA -- FE and OE

-> SAC -- FE and PE

-> $AE -- FE and OE and PE

-> $F7 -- SIC internal memory parity error

byte4-> SOD -- end of status

Command Word Format:

**

* bytel * byte2 * byte3 * byte4 *

**

where: byte1 -> cc -- command

byte2 -> ddl - first byte of dam word

byte3 -> dd2 - second byte of data word

byte4 -> $0D -- end of command

....... 1

SSM/PMAD LLP/SIC Interface Control Docun_nt

VI-4

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

Switchword Format:

bit6=0 (switch not tripped) bit6=l (tripped)

bit0

bitl

bit2

bit3

bit4

bit5

bit7

bit8

bit9

bitl0

bitl 1

bit12

bitl3

bitl4

bit15

current ovcrrange H (1)

S2 solid state swtch on H

S 1 mech switch on H

DC RPC type H (2)

overtemperamre H

off control input H (3)

on control input H (3)

always 1

current (1)

current (1)

current (1)

current (1)

current (1)

current (1)

current MSB (1)

always 1

tripped overtemp latched H

$2 solid state swtch on H

S 1 mcch switch on H

DC RPC type H (2)

ovcrtempcrature H

off control input H (3)

on control input H (3)

always 1

tripped surge current H

tripped fast trip H (4)

spare

spare

tripped overcurrent 020 H

tripped undervoltage H

tripped grnd fault H

always 1

(1) RMS current

(2) If switch contains a mech. relay, then mech switch (on H / off L)

If DC RPC (no mech. relay), then DC RPC type (1 kWH / 3 kW L)

(3) bit5 bit4 RPC command

0 0 on (error in hardware)

0 1 on

1 0 off

1 1 no change

(4) For DC Rt_ fast trip not flagged. DC RPC will be in "off" condition,

but "commanded on" in fast trip situation.

SSM/PMAD LLP/SIC Interface Control Doeun_nt

VI-5

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

V

GC Data Valid word format:

bit0 -> GC Data Valid switch 0 H

bitl -> GC Data Valid switch 1 H

bit2 -> GC Data Valid switch 2 H

bit3 -> GC Data Valid switch 3 H

bit4 -> GC Data Valid switch 4 H

bit5 -> GC Data Valid switch 5 H

bit6 -> GC Data Valid switch 6 H

bit7 -> always 1

bit8 -> GC Data Valid switch 7 H

bit9 -> GC Data Valid switch 8 H

bitl0 -> GC Data Valid switch 9 H

bkll-> GC Data Valid switch 10H

bit12-> GC Data Valid switch II H

bit13-> GC Data Valid switch 12 H

bitl4-> GC Dam Valid switch13 H

bitl5 -> always 1

NO_: L- datavalid

H -datanot valid

SSM/PMAD LLP/SIC Interface Control Document

VI-6

AppendixVI

SSM/PMAD LLP/SIC ICD

Interim

Final Rctx_

Volume 11

MCR-89-516

July 1990

Sensorword Format:

bit0 -> sensor data bit 4

bitl -> sensor data bit 5

bit2 -> sensor data bit 6

bit3 -> sensor data bit 7

bit4 -> don't care

bit5 -> don't care

bit6 -> don't care

bit7 -> always 1

bit8 -> sensor data bit 0

bit9 -> sensor data bit 1

bitl0 -> sensor data bit 2

bitl 1 -> sensor data bit 3

bitl2 -> don't care

bitl3 -> don't care

bitl4 -> don't care

bitl5 -> always 1

A current/voltage sensorword_set consists of 9 sensorwords of the above

format for a given current/voltage sensor. The 9 sensorwords will be of the following

order.

Vrms

Inns

V offset

I offset

V instantaneous

I instantaneous

P instantaneous

Preal

frequency

i

SSM/PMAD LLP/SIC Interface Control Document

VI-7

Al_¢ndix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

In this document the notation scnsorword_sct_n will mean the 9

sensorwords of the described scnsorword format in the described order for a given

voltage/current sensor "n" where n can be sensor/voltage sensor 0 to 15

r

SSM/PMAD LLP/SIC Interface ControlDocument

Vl-8

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

,..__i"

1) COMMAND:

FORMAT:

RESPONSE:-

command switch off immediately even if

already off or tripped

cc -->$20

ddl --> $80 + j

j -- 7 bits corresponding to the switches as follows:

bit 0 -> switch 0

bit 1 -> switch 1

bit 2 -> switch2

bit 3 -> switch 3

bit 4 -> switch 4

bit 5 -> switch 5

bit 6 -> switch 6

dd2 --> $80 + k

k -- 7 bits corresponding to the switches as follows:

bit 0 -> switch 7

bit 1 -> switch 8

bit 2 -> switch 9

bit 3 -> switch 10

bit 4 -> switch 11

bit 5 -> switch 12

bit 6 -> switch 13

set up 2 see timeout

- status as described in the NOTES

M_../ II I!

SSM/PMAD LLP/SIC Interface Control Document

V/-9

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

2) COMMAND:

FORMAT:

command switchon immediately even ifalready

on or nipped

cc --> $21

ddl -> $80 +j (jisdefinedin (I))

dd2 --> $80 + k (k isdefinedin (I))

RESPONSE: - set up 2 scc timcout

- status as described in the NOTES

SSM/PMAD LLP/SIC Interface Control Document

VI-1 0

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

3) COMMAND:

FORMAT:

reset switch

cc --> $22

ddl --> $80 +j (j is defined in (1))

dd2 --> $80 + k (k is def'med in (1))

RESPONSE: - set up 2 sec timeout

- status as described in the NOTES

ii

SSM/PMAD LLP/SIC Interface Control Document

VI-1 1

Appcadix VI

SSM/PMAD LLP/SIC ICD

Interim

FinalReport MCR-89-516

Volume II July 1990

4) COMMAND:

FORMAT:

selectGC (allGC selectcodes willbe settozero)

cc --> $23

ddl -> $86

dd2 --> $85

RESPONSE: - set up 2 sec time.out

- status as described in the NOTES

SSM/PMAD LLP/SIC h_ffacc Control Document

VI-1 2

AppendixVI
SSM/PMAD LLP/SIC ICD

Interim

FinalReport MCR- 89-516

Volume 1"I July 1990

".._j

5) COMMAND:

FORMAT:

RESPONSE:

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

bit

executeSIC fn'mware reset (does not reset actual set

configuration)

cc --> $24

ddl --> $80

dd2 --> $80

- set up 2 see timeout

- four bytes of data plus the status as described in

the NOTES where the first two bytes give the

following data:

0 -> 0 if GC0 connected, 1 if not

1 -> 0 if GC1 connected, 1 if not

2 -> 0 if GC2 connected, 1 if not

3 -> 0 if GC3 connected, I if not

4 -> 0 if GC4 connected, 1 if not

5 -> 0 if GC5 connected, i if not

6 -> 0 if GC6 connected, 1 if not

7 -> always 1

8 -> 0 if GC7 connected, 1 if not

9 -> 0 if GC8 connected, 1 if not

10 -> 0 if GC9 connected, 1 if not

II ->

12 ->

13 ->

14 ->

15 ->

0 if GC10 connected, 1 if not

0 if GC11 connected, 1 if not

0 if GC12 connected, 1 if not

0 if GC13 connected, 1 if not

always 1

SSM/PMAD LLP/SIC Interface Control Document

VI-13

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume H

MCR-89-516

July 1990

the third byte gives the following data:

bit 0 ->

bit 1 ->

bit 2 ->

bit 3 ->

bit 4 ->

bit 5 ->

bit 6 ->

bit 7 ->

current SIC switch0 setting

current SIC switchl setting

current SIC switch2 setting

current SIC switch3 setting

0 if A/D connected, 1 if not

don't care

don't care

always 1

the fourth byte gives the following data:

bit 0 -> don't care

bit 1 -> don't care

bit 2 -> don't care

bit 3 -> don't care

bit 4 -> don't care

bit 5 -> don't care

bit 6 -> don't care

bit 7-> always 1

SSM/PMAD LLP/SIC Interface Control Document

VI-14

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

6) COMMAND:

FORMAT:

RESPONSE:

reset continuous buffer

cc --> $25

ddl --> $80

dd2 --> $80

- set up 2 see time.out

- status as described in the NOTES

SSM/PMAD LLP/SIC Interface Control Document

VI-15

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume H

MCR-89-516

July 1990

;_; rnl

7) COMMAND: fill continuous buffer (First use reset continous buffer

then use this command to download code that is to be

continuously executed. Code will start executing as

soon as the download isstarted.Up to 80 of these

commands may be concatenatedbeforethe bufferspace

is overrun.)

FORMAT:

RESPONSE:

cc --> $26

eel --> $80 + q

ee2 --> $80 + r

(q is defined as higher 4 bits of

8-bit code(see sensorword))

(1"is defined as lower 4 bits of

8-bit code (see sensorword))

At the end of the command is appended a $26

until the last command, then a SOD is appended.

- set up 2 see timeout

- stares as described in the NOTES

SSM/PMAD LLP/SIC Interface Control Document

Vl-16

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report MCR-89-516

Volume II July 1990

8) COMMAND:

FORMAT:

fill once buffer (This command is used to download

code that is to be executed only once. Code execution is

started by the trigger once buffer command. Up to 80 of

these commands may be concatenated before the buffer

space is overrun.)

cc --> $27

eel --> $80 + q (q is defined as (13))

. ee2 --> $80 + r (1"is defined in (13))

ee3 --> as defined in (13)

RESPONSE:

At the end of the of the command or commands is

appended a SOD.

- set up 2 sec timeout

- status as described in the NOTES

i

SSM/PMAD LLPPSIC Interface Control Document

VI-17

AppendixVI

SSM]PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

9) COMMAND:

FORMAT:

get buffered data

cc --> $29

ddl --> $80 + v

(v is defined as:

dd2 --> $80

bit0 -> bufferO

bitl -> bufferl

bit2 -> buffer2

bit3 -> buffer3

bit4 -> don't care

bit5 -> don't care

bit6 -> don't care)

RESPONSE:

-->

- set up 2 sec tirneout

- data of the following format and stares as described in

NOTES

HEADER - $20

Sssssss - three bytes of status

$8F - dip switch setting for SIC card

CLfnot $8F, SIC card not

instated)

$nnnn - position in loop counter

$kk - times through loop counter

$mm - breakpoint

$22 - start of data

14 switchwords plus 1 GC Data Valid word

i_ Z ...IZ }.
irl i_i

SSM/PMAD LLP/SIC Interface Control Document

VI-1 8

AppendixVI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

Jdy 1990

NOTE: TM is temperature

multiplexed,TC is

temperaturecommon

(TM isnot useful)

temperature sensorwords 0TM,

0TC, 1TM, 1TC, 2TM,

2TC, 3TM, 3TC

frequency sensorword 0

sensor_word_set_0

frequency sensorword 1

sensor_word_set_ 1

frequency sensorword 2

sensor_.word_set_2

frequency sensorword 3

sensor_word_set_3

$22 - end of buffer

repeat arrowcd sections for sensors

4 to7, 8 to 11, and 12 to 15

SSM/PMAD LLPISIC Interface Control Document

VI-19

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume H

MCR-89-516

July 1990

10) COMMAND:

FORMAT:

trigger once buffer

cc --> $2A

ddl --> $80

dd2 --> $80

RESPONSE: - set up 2 sec timeout

- status as described in the NOTES

V

SSM/PMAD LLP/SIC Interface Control Document

VI-20

AppendixVI
SSM/PMADLLP/SICICD

Inter_n

FinalReport
VolumeII

MCR-89-516 .

July 1990

11) COMMAND:

FORMAT:

get power factor and sign (To calculate the power factor

use pfl=[Pavgl/[Vrmsl*Irmsl]. Use the same

calculation to determine pf2 using Pavg2, Vrms2, and

Irms2; if pf2 < pfl denotes capacitive loading; if

pf2>---pfl denotes inductive loading; ie, voltage leading

current)

cc --> $2B

ddl --> $80 + j

dd2 --> $80

(j is def'mcd as 0 to $F depending

on sensor pair used)

RESPONSE: - set up 2 scc time.out

- data defined as six sensor words for the specified in the

following order plus status as described in the

NOTES.

Vrmsl

I rmsl

P real1

V rms2

I rms2

P real2

"x.__j Tr

SSM/PMAD LLP/SIC Interface Control Document

VI-21

AppendixVI
SSM/PMADLLP/SICICD

Interim

FinalReport MCR-89-516

Volume II July 1990

12) COMMAND:

FORMAT:

get data for one specified switch a specified

number of times

cc --> $2C

ddl --> $80 + j (j is defined as 1 to $7F depending

on the number of times data

is specified to be taken -- input

buffer must be taken into account)

dd2 --> $80 + k (k is defined as 0 to $D depending

on the switch specified)

RESPONSE: -set up 2 sec timeout

- data defined as:

j number of 16-bit switchwords plus the status as

described in the notes

: -_-_

SSM/PMAD LLP/SIC Intcdac¢ Control Docun_nt

VI-22

AppendixVI

SSM/PMAD LLP/SIC ICD

Interim

Final Report MCR-89-516

Volume 1] July 1990

13) COMMAND:

FORMAT:

get data for one specified sensor a specified

number of times

cc --> $2D

ddl --> $80 + j (j is defined as 1 to $EF depending

on the number of times data

is specified to be taked)

dd2 --> $80 + k (k is defined as 0 to $F depending

on the sensor specified)

RESPONSE: - set up 2 sec lime, out

- data defined as:

j number of sensorword._seLn for the

specified sensor plus the status as described in the

NOTES

SSM/PMAD LLP/SIC Interface Control Document

V1-23

AppendixW
SSM/PMAD LLP/SIC ICD

Interim

Final
Volume II

MCR- 89-516

July 1990

| I

14)COMMAND:

FORMAT:

command switch on checking switch on or tripped status

first; if any of the above conditions exist, the switch

comu_d for that particular switch or switches is not

executed

cc --> $2E

rid1 -> $80 +j (j is defined in (1))

dd2 --> $80 + k (k is defmed in (1))

RESPONSE: - set up 2 sec time.out

- status as described in the NOTES

.11

SSM/PMAD LLP]SIC Interface Control Document

VI-24

AppendixVI
SSM/PMAD LLP/SIC ICD

Interim

Final Report

Volume II

MCR-89-516

July 1990

15) COMMAND:

FORMAT:

command switch off checking switch off

or tripped status first; if any of the above

conditions exist, the switch command for that

particular switch or switches is not executed

cc --> $2F

ddl --> $80 + j (j is defined in (1))

dd2 --> $80 + k (k is defined in (1))

RESPONSE: - set up 2 see timeout

- status as described in the NOTES

SSM/PMAD LLP/SIC Interface Control Document

VI-25

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

Final Report MCR-89-516

Volume II July 1990

16) COMMAND: get data for all fourteen switches a specified number of

times.

FORMAT: cc --> $30

ddl -> $80 + j

dd2 --> $80

(j is defined as I to $7F depending on

the number of times data is specified to

be taken, input buffer size must be

taken into account)

RESPONSE: - set up 2 sec timeout

- data defined as:

(j times (fourteen switchwords plus

GC Data Validword set)) plus the

status as described in the NOTES

i i II II

SSM/PMAD LLP/SIC Interface Control Document

VI-26

AppendixVI
SSM/PMAD LLP/SIC ICD

Interim

FinalReport

Volume II

MCR-89-516

July 1990

17) COMMAND:

FORMAT:

get data for all sixteen sensors one time

cc --> $31

ddi --> $80

dd2 --> $80

RESPONSE: - set up 2 sec time, out

- data defined as:

sixteen sensorword_set_n plus status

as described in the NOTES

SSM/PMAD LLP/SIC Interface Conm:_l Document

V1-27

Appendix VI

SSM/PMAD LLP/SIC ICD

Interim

FinalReport

Volume II

MCR-89-516

July 1990

18) COMMAND:

FORMAT:

get all 16 temperature sensor readings one time

cc --> $32

ddl --> $80

dd2 --> $80

RESPONSE: - set up 2 sex timeout

- 16 * 2 sensorwords for the temperature sensors

and the status as described in the NOTES

V

SSM/PMAD LLP/SIC Interface Control Document

VI-28

AppendixVI
SSM/PMADLLP/SICICD

In_

Final Report

Volume 11

MCR-89-516

July 1990

19) COMMAND:

FORMAT:

RESPONSE:

get all 16 power factors and signs

(To calculate the power factors see (17))

cc --> $33

ddl --> $80

dd2 --> $80

- set up 2 see timeout

- data def'med as 16 * (six sensor words for each sensor

in the following order) plus the status as described in

the NOTES.

-x_..J

Vrmsl

I rmsl

P reall

Vrms2

I rms2

P real2.

SSM/PMAD LLP/SIC Interface Control Document

VI-29

AppendixVII
SSM/PMAD PAPERS

Interim
FinalReport MCR-89-516

VolumeII July 1990

APPENDIX VII RECENTLY PUBLISHED PAPERS RELEVANT

TO THE SSM/PMAD TESTBED

CONTENTS

NASA New Technology Disclosure

An Architecture For Automated Fault Diagnosis

Reactive Autonomous Planning in Spacecraft

Autonomous Operation of a Space Station

Freedom Type Power Testbed

A Survey of Fault Diagnosis Technology

Intelligent Space Power Automation

An Object Oriented Model for Expert System Shell Design

Knowledge Management: An Abstraction of

Knowledge Base and Database Management Systems

A Knowledge Base Architecture for Distributed Knowledge Agents

2

9

16

23

32

48

60

73

91

SSM/PMAD PAPERS
VII-1

NASA NEW TECHNOLOGY DISCLOSURE

VII-2

x,_.j

1.0 Detailed Descriotion

The automated power system test bed depicted in Figure 1-1 demonstrates a power
distribution system where ground crew and astronaut interactions are minimized.
Automated portions of the system, leading to its autonomous capability, were developed
under NASA/MSFC contract NAS8-36433, "Space Station Automation of Common
Module Power Management and Distribution System". Autonomous elements of the
system integrate automated intelligent power control software with smart power hardware
developed under NASA/MSFC contract NAS8-36583, "Common Module Power System
Network Topology and Hardware Development". The system developed on this contract
represents state-of-the-art in intelligently controlled autonomous power management and
distribution systems. Detailed descriptions of the system can be found in the attached

papers.

The purpose of this project was to automate a breadboard level power management
and distribution 0aMAD) system test bed which possessed many functional characteristics
of a specified Space Station power system. The automation system was built upon two
versions: first, a 20 kHz 208 volt ac source with redundancy of the power buses; and
second, a high voltage (120 to 150 vol0 dc source, again with redundancy of the power
buses. There are two power distribution control units which furnish power to six load
centers which in turn enable power hardware circuits based upon a system generated
schedule. This report documents Martin Marietta's progress in developing new technology
to build this specified autonomous system. From this, important gains have been achieved
in implementing intelligent control and management for these complex power systems.

The Space Station Module Power Management and Distribution (SSM/PMAD)
system possesses the capability to perform diagnosis whenever a distribution fault is
encountered. The system autonomously reconfigures its operation during run-time and
reschedules activities around the fault, rather than just shutting off power to the affected
area completely. The key new technology developments which were paramount in
producing this operational system were:

1) Developing a svstem architecture which blended deterministic
level processing with Artificial Intelligence (AI) processing
without producing real-time performance penalties.

2) Providing multi-agent interaction through the
functions into logical groups and sub-groups.

3) Combining multi-knowledge agents and deterministic processes
into a sin_lar control elemen_ within a distributed environment.

1.1 System Architecture

A result of the initial defining work was to separate items as needed into hardware
and software elements. The Space Station Module Power Management and Distribution
(SSM/PMAD) breadboard hardware consists of two distinct elements: the power control
hardware through which current flows to power target loads, and the automation hardware
which is made up of computers and process oriented circuit cards.

VII-3

POWER
STAR
BUS

A

PDCU A

r

LOAD !
CENTER

I

• sENsoR .LREMOTE
RMS VOLTAGE =rPOWER
R_MS CURRENT CONTROLLER

POWER 1 OR 3 KW
FACTOR

LOAD PRIORITY LIST
MANAGEMENT

SYSTEM
& FRONT END LOAD
ENABLE SCHEDULER

(LPL_ & FELES)
SCHEDULE

MAESTRO

FAULT RECOVERY
& MANAGEMENT
EXPERT SYSTEM

(FRAMES)

COMMUNICATION
& ALGORTHIMIC

CONTROLLER

RS

fl REMOTE $ REMOTE
CONTROLLED BUS
CIRCUIT ISOLATOR
BREAKER 15 KW
10 KW

POWI_R

STAR
BUS

B

PDCU B

LOAD

LLP - Lowat Level Procuser
PDCU . Power Distribution Control Unit
SIC. SwI_v_n- _,,_,-r=,_ conwon_
A/D - Analog to Digital Card

V

Figure 1-I SSM/PMAD Test Bed Diagram

Power control hardware consists of analog and digital level hardware units and is
considered as part of the power system topology hardware. The automation hardware is
part of the automation system and provides the interface between the user, the autonomous
functions, the communications and algorithmic controller, the lower level processors
(LLPs), and the actual hardware control.

VII-4

The software architecture takes advantage of the hardware architecture by placing
the deterministic elements into the lower level distributed processing elements which
interface directly to the power control hardware. Slower operating expert system
applications reside farther from the hardware, with the slowest being farthest away in terms
of interface layers as shown in Figure 1.3-1, The result is a very crisp command structure
close to the actual power control hardware and a more refined reasoning strucnne where
time allows. This provides an environment relatively free of real-time performance
penalties.

SSM/PMAD architecture is that of a multi-agent distributed system. The
partitioning and distribution of software functions within the architecture provides a real-
time capability for interfacing large knowledge processing systems to the time critical
power control environment.

1.2 Partitioning of Software Functions

The SSM/PMAD is, by architectural considerations, a multi-agent distributed
system. This influenced the partitioning and distribution of the software functions. The
user-interface also influenced the location and functional form of the various software

elements. The strongest factor influencing the software partitioning was the knowledge
content of each functional form.

The Front End Load Enable Scheduler (FELES) provides the user access to the
scheduling environment, MAESTRO, and handles returning information from the
knowledge based fault management activities. Whenever run-time re.scheduling activities
are required, FELES initiates scheduling and priority management activities with the
appropriate update information.

The Load Priority List Management System (LPLMS) handles initializing and
managing priorities of loads. Based upon heuristics, initial priorities for powered loads
will change with occurrence of various system events such as changing availability of
system power, passage of time, emergencies, and others. These priorities must be
managed and allocated in proper ways to assure dependable system performance, and the
LPLMS accomplishes this needed function.

MAESTRO is a load scheduling function. It contains basic model knowledge of the
overall power system and the required heuristics to ensure correct allocation of resources.
The result of MAESTRO's work is the production of a Load Enable Schedule (LES) to be
carried out by the LLPs.

The Fault Recovery and Management Expert System (FRAMES) is the backbone of
the run-time environment executing the LES. FRAMES diagnoses faults and commands
the overall system. FRAMES maintains the system status and provides the autonomous
run-time user-interface. FRAMES understands the function and roles of all the operating
agents within the SSM/PMAD.

The Communications and Algorithmic Controller (CAC) is the central
communication facility for tying the higher level automation hardware and the LLPs
together. The various functions which exist on the CAC are bundled to form the
Communications and Algorithmic Software (C.AS). The primary responsibilities of the
CAS are to sort and deliver the LES into its appropriate subcomponent representations for
execution by the LLPs, and to stage and deliver data between the FRAMES and the LLPs.
It also contains the manual mode operations interface.

VII-5

LowerLevelFunctions(LLFs)performalgorithmicmanagementof theLES. They
also contain a lower level segment of the _S diagnosis _tivity which l_vides rapid
limit checking and initial levels of fault condiuon pattern matching. This provides an
innovative implementation of knowledge based functions being executed in a deterministic
manner, and then being reasoned on at higher levels. Therefore, the FRAMES/LLF
interaction is as that of a worker-manager relationship. The worker performs tasks as

defined by the manager, and the manager possesses the capability to reset the workers
limits as needed.

Allocation of these software entities tO the appropriate hardware and the user's and

hardware control access points are shown in Figure 1.2-1.

USER
J

Figure 1.2-1

v

v

Automation

AUTOMATION
HARDWARE

AUTOMATION

SOFTWARE

FELES

LPLMS

MAESTRO

FRAMES

CAC

LLFs

POWER

CONTROL

HARDWARE
i

l
Software Access and Allocation

1.3 The Sin_lar Control Element

Intelligent control of the SSM/PMAD test bed is provided by the integrated
knowledge agents and deterministic functions. In the case of FRAMES, part exists as a
knowledge based function, and partexists as a deterministic layer within the LLFs. The
control function of the integrated automation system is shown in Figure 1.3-1. Control is

parsed into three layers. First, The Future Parameters layer, which consists of planning
and scheduling functions, supplies either initial or updated activities lists in the form of
schedules or tasks. Second, the Near Real-Time Control layer which provides fault

management and recovery through knowledge based processes, as well as buffering to the
distributed environment. Last, the Real-Time Control layer, which consists of embedded

processing and smart power hardware, provides system level process commanding and
data aggregation of the power hardware into knowledge lists.

These three layers provide an overall timing response that fits wen into the
SSM/PMAD architecture. The control is further strengthened by the proper partitioning of

the automation functions. Process times provided by the Real-Time Control in the most
critical area occurs in microseconds. Knowledge processing in the Near Real-Time Control

may take several seconds, while Future Parameters processing usually ranges up to tens of
seconds. Fault protection processing, therefore, occurs at the Real-Time Control layer and

VII-6

is provided by the LLFs; fault recovery and management are provided by FRAMES at the
Near Real-Time Control layer, and planning and scheduling are presently performed by the
LPLMS and MAESTRO within the Future Parameters layer. The process complexity and
the length of time in process match the layers of needed control and the time in which a

FUTURE

PARAME TERS

S UB S YS TEMS

PLANNING &\

SCHEDULING

FUNCTIONS

NEAR REAL.TIME CONTROL I
REAL-TIME CONTROL

UPDATE /

REQUESTS

FAULT OCCURRENCE

AND MEASUREMENT DATA

UNIFIED

ACTIVITIES

OR UPDATES

KNOWLEDGE EMBEDDED

BA SED PROCESSING

CONTROL SEGMENTED S YS TEMS
SCHEDULE

& COMMANDS

HARDWARE

PR OCESS S YS TEMS

COMMAND S CONTROL

UNIT MEASUREMENT DATA

&

RESPONSES

POWER HARDWARE ELEMENTS

Figure 1.3-1 The SSM/PMAD Control Function

response to a fault or situation is needed. Therefore, the process and its configuration
within the overall system appear as one, even though they are separate features.

This provides significant innovation in the way faults may be managed by
knowledge based processes introduced into the real-time SSMS'MAD hardware
environment. The flow of the execution and management process is quite well defined and
is shown in Figure 1.3-2. The initialization part requires inputs and responses from a user.
The run-time portion executes autonomously and can reconfigure the system operation in
the presence of faults. The fault management process consists of diagnosis and recovery.
Diagnosis contains a sub-process providing isolation of the faulted components. Detection
of faults occurs at the LLFs and is immediately communicated to higher levels so that

diagnosis may begin. Diagnosis may cause opening and closing of switches, as well as
gathering of data from what may seem to be unaffected portions of the distributed power
control environment. Recovery takes place when diagnosis is complete; however,
immediate satingactivitiesusuallyareprovided by smart power hardware orthe LLFs
whenever a faultisfirstdetected.This informationmust alsobe provided whenever

diagnosisisunderway.

VII-7

Health

'Anom oi ou_ New Plan•_ &

_Events 3 "" Schedule

1. Diagnosis

2. Recovery

INITIALIZATION

RUN-TIME

(_mmedlat h ¢Isolate_ (_ Order _ _Group_Faults

[Trends/J

Figure 1.3-2 SSMIPMAD Execution and Management Process Flow

VII-8

AN ARCHITECTURE FOR AUTOMATED FAULT DIAGNOSIS

A PAPER PRESENTED AT THE IECEC IN AUGUST 1989.

VII-9

AN ARCHITECTURE FOR AUTOMATED FAULT DIAGNOSIS

Barry R. Ashwonh
Martin Marietta Astronautics Group

Denver, Colorado

ABSTRACT 2. Introduction

Martin Ma_tt_ under contract to NASA. MarshallSpace
Flight Center since 1985. is continuing the development of technologies
and methodologiu for useintheautom_im of powermanagement and
disuibution.

Automating the management and cenuol of power di_"ibuUon
sysu_w.sinUoducesissuesandconcernsforthc/'Lowof iafom-.atien and
cOnu'ol.Thb iseJpccially mac when knowledge-based systeJ_ rareused
in diagnosing [aulu and treads withinthev/r_.m. Proccaing funcdom
mustobtaintheappcopristC damfrom the circuiu and h&dwl_ which
disu'ibu¢power. Providingtheconv.ctmix o(h&dwam ct_uol
automated diagnosiswith te._ng introducessystem-wiCkr.,hitcclmal
pmsibilitwJ,. In this paper an architexttm_conudning • knowledge-based
sygt_m which has been successfully used in power sys_m management
and fault diagnosis is Wesemed. Architectural _ which effect ovetlll
system activid_ andpeffommgc are examined. The Imowledge-bued
systemis discussedalong with itsassociatedautomationimplicado¢_,
and interfaces throughoutthe gygtcm ate pres_ted.

1. Nomenclature

,'d
AC. ac
CAC
CAS
CCCE)
DC, dc
FELES
FRAMES
GC
Hz, hz
K.k
KW. kw
LC
LLF
LLP
LPLMS
MSFC
NASA
PDCU
RB!
RCCB
RPC
SIC
SSM/PMAD

Anff'¢ial Intotligerce
Altcn_ing Cunent
Communicationsand AlgorilhmicConuoller
CommunicationsandAlgorithmic Software
Computation andControl (Engine)
dL,,_tcur_ru
FrontEnd l.xatd Enable Scheduler
FaultRecovery_ ManagementExpertSysv.m
CgncticConttoikr
Hcnz (cyclespersecond)
Kilo (lO00)
gilowau (l(_0watts)
t-,,,_ Cen_r
LowestLevel Funcdon
LowestLevd Pmcess_
Load PriorityList Management Sln_m
(Gengge C.) k_nhall SpaceRight Cenl_
NationalAeeonguttc__ Spice Administr•tk_
Power Distribution Comtol Unit
Remote Bus Isolator
Rcmo_y Contro_icdCircuk Bw.al_
Remc_cPowerConu_llet
Swich InterfaceController
Spice S_ion Module(Auto_w, ous)Pm_.r
ManagementandDiswil_tio_

SSMIPMAD]
Syltem A fcklte¢lwre

t
[, |

I """" l l a'a.... JCtll 1['11911f IIIHIIII_ !!

I L

Filture I Tke $SMIPAfAD Architectural Hierargk$

The commitment to the integration of advanced
technologies in the future complex space efforts ([16] and
[21]) is mandatory. The advanced architectural considerations
[I I] encounten_ in these types of applications presents many
opportunities and obstacles which arise when exploring
possible solutions to these complex problems. The systems
engineering and integration encountered when allocating a
broad range of technological disciplines to a subsystem control

problem yields unique architectural results within the solution
system. Architectures ate often overlooked in theft cause and
content once a system is operational. However, the
architecture, along with its cause and content wovides the
elemental view into system activities and performance.

The Subsystems Application Automation Team within
Martin Marietta's Denver Asu'onautics Group has developed
and installed the SSM/PMAD power system automation test
bed at the NASA/MSF-C Electrical Power Branch in
Huntsville, Alabama. A systems enginecringapproach [4]
was used in the development of the test bed from the project
start in 1985. The architectural elengnts of the SSM/PMAD
consist of both hardware and software, and their integrated
composite, as seen in Figure1.

This compositiongivesrisetoa functiondefining
methodology known as function partitioning [14] which was
used extensively in the SSM/PMAD development. After the
functions were partitioned, functional decomposition was used
to establish implement•big subfunctions which fulfilled the
overall architecture. In order to understand the overall system,
it is necessary to fu_t understand the system objective and the
primary goal within that objective. The objective was to
provide autonomous managerr£m for an advanced automation
utility power management system test bed. The primary goal
within the system objective was to he able to manage the

lap,u/rawersystem, autonomously, even during the occurrence of
•Thisobjectiveandgoal takenin theco_textofa

complete power system iedto the stchitecnu'e described hen:.
Hardware element p_tionJng gaveriseto two

fundamentalcomponents. Hrst. the PowerandSwitchgear
component [1] which b used to enable power to loads.
Second, the Automation hardware component which contains
the automation process used to control the swiehgear
components. The composition of these components is
discussed in the respective hardware subsections under
Section 3.

In turn, the partitioning process of the software
clement gave rise to two primary software subcornponents.
One, used in the process of direct conuol very near the
switchgear hardware elements, utilized well behaved, quite
predictable subfunctions m_d became the Deterministic
component. The other, not so predictable, but well behaved if
viewed in the context of knowledge processing functions.
formed the Knowledge Based component These components
are further describedin their respecdve subsections under
Section 3.

VII-IO

3. The SSM/PMAD System Structure

Tbe intecratcd systcm su'ucture for the SSM/PMAD
contains all hardware and software components. This is
shown in Figure 2. The utilityloadconnections reside atthe
omputs of the LCs. Tic sourcc power is 208 Volt 20 IQ-Iz ac.
and the bus topology of the present implcmcntadon is a ring t.
When considering the su'ucture of the SSM/PMAD in detail,
the various elements must be considered one at a time and then

integrated, The clcrnents arc the hardware and _ software,
and to a lesser degree the user interface because the system's
objective is autonomous operation. Howcvcr, even an
autonomous systcm should be rich in user interfaces and
should possess a complete manual operation capability. Thc
SSM/PMAD does.
3.1 The Hardware Element

3. I.I Power and Swiwhgear Hardware
The hardware clen'_m of the SSIvUPMAD contains the

two fundamental components: power & switchgcar hardware
and automation ha.,dwarc. The primary activity of the powu"
& switchgcar hardware is to pcd'orm instructed switching
activities and to provide a current path for enabling power to
the udlity connections used by varying consumer loads. A
detail of the hardware element is shown in Figure 3.

Existing within the power & switchgear hardware
component are several subcomponcnts. Tbe primary
subcompontnt which is purely power is the power bus itself.
Other subcomponents have to do with switchgcar. These arc
the SIC card, the GC card, the A/D card, and the RPC or
RCCB. RPCs can either be rated at 3 kw or I kw each,
depending on their spocific application, and the RCCBs arc
rated at 10 kw. These ratings relate to the amount of power
being supplied to different locations in tbe test bed as can be
seen in Figure 2, which also shows the 15 kw RBIs that reside
above tbe PDCU RCCBs. All of this is intended to provide s
power distribution archiccture which can be implemented and
understood within a knowledge base/deterministic softwarc
setting which will be described in the next subsection.

a_vwll It4mPmMtll

II_m|

Itgll,I

l !

3.1.2 Ataomation Hardware

Another component of the hardware elamnt, as can be
seen in Figure 3, is the automation hardware.. This is
composed .of the various Computational and Control (CC)
engines whsch provide the physical computing envkonment
I.or _ test bed. _.'I'n._p. is one physical computing environment
mr me,test bcd..R is _ distributed and modular,allowing
gTaomu system acip'madon at tbe loss of individmd LLP CC
units.

3.1.2.1 LoweJ! Level Processors

There arc _y up to eight LLPs allowed on the
test bed at any one dmc. However. nothing pse_,nts that
number from being much larger. F.w,,h LIP is composed of
three separate cards: • 107 processing card utilizing a Motorola
68010 micro-prooessor, a 331 communications canL and a
705 card also used in conmmntcations activities. The LLPs
communicate with the Motorola VMPJ10 (CAC) and the lower
level SIC cards via an RSd22 connection and arc the lowest
level at which upper lcvcl communications requests are routed.
Therefore, the LLPs are ¢onddered as • minor extension of the

per level processing platforms such as the Motorola
Ell0 and the Xerox 1186.

FIllEt

IIN|

P01B|D

IlNI

i¢ w _ m[wlq
Q _ mkwa41 _ im_qllmm mm N

wire tlmlm

mlllRII-1 m. O, mm
im4Lm m IWA,_lm
141m wlm

sm. nw_ium w 4mmam_
• immmw

Figure 2 $$MIPMAD Breadboard Structure

I On December 14, 1988 a NASA Change Request specifying
120 Volt dc source power was put into effect. Also, dnte then
the bus topology has changed to a STAR.

VII-11

ORIGINAL PAGE IS

OF POOR QUALIfy

3.1.2.2 Communications and Algorithmic
Controller

The CAC is used as a communications and routing
dispatcher. Communications to upper levels is handled across

an RS232 connection. This currentl_ presents no performance
degradation due to massive commumcations activity at the
lower levels. However, taken in its entirety, communications
surrounding the CAC does present a perfommnce issue which
is being examined closely as a place for broad system
performance enhancement.

3 1.2.3 LISP Engines
At the upper levels of the automation hardware

architecture are the knowledge base (Or AI) environments.
These are LISP CCEs which provide great power as
development environments for rapid prototyping. One is a
Xerox ! 186. and the other is a Symbolics 3620D (D for
Development). These machines fit in to the development
scheme for the SSM/PMAD test bed quite well because they
sm3agly supported the iterative refinement techniques used
through vendor offered software tools.

The total hardware architectural clement provides a
flow. This flow can be understood best in terms of the
software architectural dement, which will be shown to lay on
top of the hardware clement, elegantly as an extension.
3.2 The Software Element

Components of the software element are divided
logically along the lines of function partitioning and allocation

to hardware platforms. These will be described starting once
again at the lower levels and working our way up. Figure 2
shows the higher level allocation of software functions such as
fault management and scheduling• These software functions
are knowledge based components and promulgate the central
theme for the autonomous functionality. However, there is
also functionality at the CAC and LLPs which should not be
overlooked. The SSM/PMAD hardware/software automation
breakout is shown in Figure 4.

J HARDWARE

. Swltc_temr
Swlttk Conlrel

hRalog to Dlettal

A tttomltlcn ,.

Figure 4

SSMIPMA D

SOFTWARE

. Compiea F.aetlea# (Ai)

Cemt,¢Rllamll

Cemlrel

Lowe:t Le,,et

Automation Architecture Breakout

3.2.1 Lower Level Functions

The LLFs reside at the LIPs respectively. These are
specialized to deal with the needs of the PDCUs or the LCs.

The LLFs perfe_n dam acquisition, organize, and format the
switch hardware dam for use by the upper level knowledge
base function at FRAMES. They also are the sole
interrogators of switchgear hardware. The LIFt also wovide
a FRAMES direct extension which performs limit checking on
a more rapid basis than could be provided from the upper level
FRAMES• This is shown in Figure $. _ software
development was done using the PASCAL language.

3.2•2 Communicottons and Aigorithmic Sofiware
CAS resides solely on the CAC and provides

IratTicking control, as well as management of the incoming
management software structures for use at the LLFt. it also
organizes and buffers dam going up to FRAMES from the
LLFs. CAS contains elements of the user interface software

and provides the complete interface during manual control
activities. CAS sohware was developed using the PASCAL
language. CAS activity in the test bed automation software is
shown in Figure 5.

3.2 3 Fault Recovery and Management
Erpert System

FRAMES is the heart of the SSM/PMAD test bed.
FRAMES ensures that the load enable schedule which _

provided From the scheduling interface is managed properly.
lfa fault occurs, FRAMES diagnoses the fault ([15], [18]. and
[20]) and directs system recovery if one is possible.
FRAMES has been designed to handle many types of faults
which are identified in Table 1. If a fault occurs in the system
FRAMES communicates this event over to the Controller

which resides as part of the FEI.F._. If FRAMES can recover
intact from the fault, this is also communicated. But, if not, the
scheduler, MAESTRO, builds a new scheduleof events in
coordination with the LPLMS which is in tam sent to

FRAMES. The new schedule, complete with its associated
priority list is then integrated into the test bed by FRAMES,
CAS, and each involved LLF. FRAMES is a knowledge
locatbocatased.,activity and is implemented in the LISP language. The

ion of the FRAMES knowledge bared system is depicted
in Figure 5.

3.2.4 From End Load Enable Scheduler
The FELF_ interfaces both the user and FRAMES to

the scheduling program, MAESTRO. FELES helps to define
 ,ults , vity .and int ,
software zor activity initiatizauon. FELES is a knowledge
based activity and was developed using the LISP
programming language. FELES is shown on Figure 5.

PlAMEI
MAI$1P_O I_ JIN

_mW_h* _ m

154J1 - • _" "

F_'* $ I.*,,_ !.*_! Fs_ E_atkm o/ Frames

3.2.5 Load Priority List Management Sy_em

ac_i" A list priority structure is important to overall _stem
wty, ..e:_cially during tings of fault occurrence. It ts the

re spo..nsl.b.ihly of Ih_ LPL.M_ to gertel_te and maintain this

_cdty list for lest bed activity. The LPI,.MS is a knowledge
process aim is implernontcd in LISP. it is shown In

Figure 5.
3.2.6 MAESTRO Scheduler
The schedulingisperformedby theMAESTRO

schedul'.mg component [2]. MAESTRO was developed
separately from the SSM/PMAD software. It is a knowledge
based ac'tivity which is implemented in LISP. MAESTRO_
location is shown in Figure 5.

• Ag.of the previously described software functions
work m untson to provide SSM/PMAD system test bed
ammomy. This autonomous function implies a certain
integrated control aspect to the overall functionality which has
not yet been described. It will be described along with the
system operational modes in the following subsections.
3.3 Element Integration, Control, and User Interface

3.3.1 Element Integration
Each of the various hardware and software

components for the test bed were integrated to provide an
ovendl system. Figure $ shows the software to hardware
allocation which resides within the system. The
communications protocols which were utilized are those
shown in Figure 3. The Knowledge based activities wcrc
concentrated into units which had unique or shared aspects.

Vll-12

For instance. FRAMES activity is unique and independent of
LPLMS and FELES activity once the autonomous operation is
initiated. Therefore, it resides on a unique platform, the Xerox
1186. The PELFS and LPLMS functions both relate to
scheduling and so were placed on the Symbolies hs:dwsre
platform with MAESTRO. The schedule is allowed to be
updated by an event within the autonomous run-tirrg
environment or by a user-recjuested reduction. Schedule
updates are affected by priorities which are managed by the
LPLMS on • 15 minute basis. The overall s],'sunn maintains a
general knowledge of temporal activity but. m general, all
software ¢ompon_ts are ignorant o(event time specifics. A
look st the generally integrated architecture of Figure 5
presents • strong argument for not maintaining • synchronous
environment.

One issue o(element integration which bates mention
is that of logic _l-based reasoning versus he.m_tics.
There were considerations about primary memory dzes, bus
speeds, and communication link speeds which fctxa:d the
choke of heuristics employed in the FRAMES knowledge
.base. Fault symptom malriceswere developed and employed
heuristics derived from knowledge engineering. These
allowed the use of heuristics for all cases except the situation
ot topological structure. FRAMES maintains a simple model
for the current system topology.

l) Hard Faults. directly measured limit responses.

2) Soft Faults- unscheduled use d' eurreuL

3) Cascaded Faults - faults flowing into faults.

4) Incipient Faults - faults about to occur.

S) Masked Faults - faults which emer|e trots faults.

Table I F_ult T_,pes Handled b_, FRAMES

The result of the integrated system provides a hii3e
processing network. Basically the whole of the system is •
network with the exception of the FRAMES component which
actually exists pmiaUy as • message passinj_([9] and [19])
function, loosely coupled among multiple distributed
processors. A flow of knowledge based information
throughout the sys_m results and is shown in Figure 6.

@

Oo o

Figure 6 System Xaowledg¢ Flow

3.3.2 Co_rol
The SSM/PMAD possesses three operational modes.

These are ini_*"ntion, autonomous activity, and manual
acdvky. The mocks and their activities ate depicted in Figures
7, 8, and 9. This shows that the user is the highest level of
control in the system. However, given the overall system
without conddering the user's level of control, the test bed
structure can be described as • nested control (software
control) loop. This is shown in Figure 10. The lowest level
of system control exists at the LJ.Ps, and an owning higher
level of conaol exists with FRAMES at the Xerox 1186. This

is an important feature which Idlows the system to be viewed
from a fimiting situation rather than just • knowledge base
interfacing to deterministiclevel processes.

3.3.3 The User Interface
The user intuf_ consists of the _ts shown in

Figure 11. One of these elements, the one utilized by
FRAMES •t the Xerox 1186, displays the system as shown in
Figure 12.

Step A, Tlm usa" kdtlatu qaem htltlallzmlm

SMp n: The sc_duk aml Iwlerlt7 Nit k d*t_laded
M needed OWUslizaUea er Ul_te).

Ft_ure ? SSM/PMAD $_sUm isb_llgat_a

Auleemmms Immm m,d la(,wmattm flew.

MAErrMo & raAM ms CA4: CemammkMJe_ _ M_
LPUt4S _ tk_lmtq _ • Cem_

I. The LLJ_s ssed q_ sv*lkbk mlkk Nsle la/mM41m.
I. Tb* CAC Imek_ kdr*rm ,h.-. te IqL4JdBL
J. IqtAMl_ s,ads tsek ad mMb_lim kdbnml_ Is IqH, Im.

|. 'rm CAC dlm_m,-, am4*. mk.dd_ i_i*dt; I1_ ,.HI qq_ Im,d
mt4m_ t* a_e m i,i.h.

4k New _ end prie_ I re.t. m _ i_dalde _ IraAMl[L
Nmm Ada"_ 4 • | Imlm lama im_ _lm_ tim Jim ----,t- I_lm_e_

Figure I $$M/PMAD Atttolomesl Me¢le Opcralla_

I(o..

Filrawe _ $$M/PMAD Maaul Modt O_nld_

VII-13

ORIGINAL PAGE IS

OF POOR QUALIFY

MINUTES SECONDS TO IOi of SECONDS I_ECONDI to SECONDS

FUTURE I HEAR REAL.TIME] REAL.TIME

PA RA METER S _ CON TR 0 L I CONTROL

_ 1

OR IIP_4TES • COMMANDS JG C l A

I':1
1o i

EXTERNAL WORLD

Figure 10 SSM/PMAD Control Flow

|SV,,.OLtCS /.oTo.oL, I
° I I

- Melm A g._mlrd ell l " Kiylm, m'd ...-t7

- I¢lml [- Mml (ilqli-lnd

• Meau. (multl.k.el) _t_ (mulll4i.el) | _ trfmbel gimlgt)
• T.,I I" T.at

NOTE: An _m t-t_rf[mm t'el llt ll_h,i _ Im d_ II'-'l lld_
II • Jill k_ _llli ¢. II • lql i _lllll
dlq_lll i • iill
D ,I. Ulll" i_ ire li_

Piglet II $$MIPMAD leeedbelrd User Inttrfeeet

4. Concluding Remarks

The SSM/PMAD testbed possesses t rich and
complex architecture which pmv_es autonomous management
capability• Our approach to its development was to view the
ent_'e problem and allocate appropriate technologies in a
systems approach, rather than to try to isolate a domain
specific problem around which to form a single knowledge
base in a mundane approach. Its development, however, was
not without a frustrating manifold of obstacles. Concurrent
development of the switchgear hardware and the automation
software [6] gave rise to development weaknesses in the
FRAMES knowledge base (who can be an expert on hardware
which does not yet exist ?) and caused exu'a iterations in the
complete development cycle. This problem has been
overcome, but experience is what you get when you don't
have any.

The system is now being examined for directions in
growth. Growth is one of the key plus features of Imowledge
bases, but it is also not without its negative potential. When
this project staned in 1985 the hardware chosen was adequate
forthe plans and requi_ments which then existed. Those
attributes grew during the initial three years of development
until now they are lar_er than the capability of the processors.
As new functionality is added to the overall system each
component degrades slightly in performance, Questions then
arise. How is performance improved?. And, which
technological area is the weakest (needing added strenglh the
most)? General!y _the findings have been that the knowledge

based areas are in greatest need of improvement in terms of
performance. Performance issues, however, not only relate to
processor speed but also to how the knowledge is both

rganized and accessed. The FRAMES portion of the
.S..M(P.MAD test bed is undergoing improvement through the

aacuuon of a more complete knowledge base management
system which integrates database management a_ivities
internally.

A new requirement we are examining is that of
"intexngdJate levels" of autonomy implying the capability of a
user to take over various levels of power within the system.
such that the real-time understanding of the overall system and
its topology ate subjecttochange,. This mequires the
introduction, oft new knowledge based planning func_on
wmcn cou_ instruct the othex knowledge base functions on
how to cope with these changes. Therefore. we are also
planning to introduce new genera] purpose workstation
hardware to the environment. This would provide processor
pe_'...otmance levels as available today, yie]din]g new and more
excmng capability levels. The current capabilities of the
SSM/PMAD system architecture will not diminish, but will
rem_n strong and flexible.

S. Acknowledgement

This work was performed by Martin Marietta
Astronautics Group under contract number NAS8-36433 to

the NASA George C. Marshall Space Flight Center,
Huntsville., Alabama.

V

" * '= ::_-==': -- ill-14

Figure 12 The SSMIPMAD FRAMES User Interface

6. References

[I] P. Anderson, J.Martin, and C. Thomas_, "Automated Power

Distribution Hardware'. Proce_ings of the IECEC, 1989.
[2] D.L Britt.].R. Goht_g, and A.L Geoffroy, "The Impact of the
Utility Power System Co¢_ept on Spacecraft Activity Scheduling,

Proceedings of the IECEC, page 621, 1988.
[3] B. ChaMrasekanm, "Towards • Functional Architecture fat

Intelligence Based on Generic Information Processing Tasks', Proceedings
of the International Joint Confe.,-ence on Artificial]mclligeance, p_e 1183.
1987.

[4] J.L. Dolce and K.A. Faymon. "A Systems Engineering Aplxoach Io
Automated Failure Cause Diagnosb in Space Power Syue._nl',
Proceedings of the IECEC. page 590, 1987.

(5] P. link. J. Lasth, and J. Dtlmn, "A _ EXpeXl Systmn De,Sign
for Diagnostic Problem Solving'. IF.El: Transactions on Patm'n Analysis
and Machine Intelligence. page $33, Septembcz, 1985.

[6] K.A. Freeman, R. Walsh, D.J. Weeks, "Co_urrenl Development of
Fault Management Hardware ilfid Softwlwe in the SSM/PMAD',
Proceedings of the IECEC, page 307, 1988.
[7] M.R. Gcnesrzeth, "An Overview of Meta-Level Ax_hitectme',
Proceodings of the Nltio_ml Confere.Jsce on Artificial Inlelfigence, page
il9, 1983.

[8] M. Goorgefr and O. Firschein. "Expel1 Syso.ems for Space Station
Aulomafion'. IEEE Conlrol Systems, page 3, November 1985.

[9] A. Gupta and M. Tamb¢, "Suimbilily of Message Passing Computers
for lmplcmcnling Production Syrm:n_', Proceedings of d_ Nafiomd
Conference on Artificial Intelligence. page 687, 1988.
[10] M.A. Kelly and R.E. Seviora. "A Muhilxoces.sor Archileelure for
Production System Matching', Proce_ings of the National Conf_ on
Artificial Intelligence, page 36, 1987.

[I I] P.J. Kline and S.B. Dolins, "Choosing Architectures for Expert
Systems', Rome Air Development C¢¢tter, Air Fo¢c¢ Syr,terns Command,
Griffis AF'B, RADC-TR-85-192, October 1985.
[12] L.F. Lollar and DJ. Weeks, _ Amomyamusly Managed Power
Systems Laboratory', Proceedings of the IECEC, page 415, 1988.

[13]W. Miller, et al, "Space Station Automation of Common Module
Power Managcment and Disuibudon'. Martin M_¢tta Aerospace Denver
Aswonautics Group, 1989.
[14] W.D. Miller and E.F. Joe_, "Automated power Managemem
Within • Space Statim Module', Proceedingsof _ IECEC, page 395.
1988.

[15] W.D. Miller and E.F. Jones, "Aulomiled Space Power Dism'bulion

and I._d MaMgemem'. Prw.,eediniPz of d_e IECEC, pal[C _4, 1987.
[16] NASA. "Space Suuion Advanced Automation Study FinalReport',
Stnuegic Plans•ridPrograms Divisk_, Off'teeOf Splc¢ St•lion,NASA

May 19U.
[1"/] R. Reich.r, "A "rheo_ of Diagnor, is From Vtm Principles'. A.,'dficitl

lmellig_w.¢, 32(1), page 57, 1987,

[1B] L Ried¢.r,el, "A Survey of Fauh Diagnosis Technology',
Proceedings of Ihe IECEC, 1989.
[19] D.P. Sk_wiorek, C.G. Bell, and A. Newell, "Computr.¢ Structure.s:

Principles and Examples', McGraw-Hill, page 332, 1982.
[20] DJ. W_k_ "Space Power Sy_.m Automatlm Approache_..,sat the
George C. MarahaH Space Righ Center, Prcr.eedinls of the IECEC,
page 538, 1987.
[21] DJ. Weeks, "ExF_rt Syslerns in Space', IEEE Polentials, Vol. 6,
No. 2. 1987.

ORIGINAL PAGE _$

OF POOR QUALITf

VII-15

REACTIVE AUTONOMOUS PLANNING IN SPACECRAFT

A PAPER PRESENTED ATTHE AAAIC IN OCTOBER 1989.

VII- 16

REACTIVE AUTONOMOUS PLANNING IN SPACECRAFT

Barry R. Ashworth

Martin Marietta Astronautics Group

Denver, Colorado

ABSTRACT

Martin Marietta, under contract to NASA, Marshall Space Flight Center since 1985, is developing
technologies and methodologies for use in the automation of power management and distribution
subsystems. Often, these same methods apply to other spacecraft subsystems, such as attitude control and
command and data handling. Autonomous management of subsystems includes the functions of
monitoring, control, and diagnosis. In order to effectively control subsystem activities during the
occurrence of faults, diagnosis alone is not sufficient. A plan of recovery reacting to the system state, the
fault and its implications, and the desired goals is also needed.

Reactive planning introduces issues and concerns for successful autonomous functioning of
spacecraft. This is especially true when various subsystem interactions are considered while diagnosing
faults and analyzing trends within the overall system. Power distribution and control is especially sensitive
to faults md interruptions, as other subsystem activities may be interrupted and overall system catastrophic
failure may result. In this paper an approach to reactive planning used in power subsystem management is
presented. Subsystem interaction issues which effect overall system activities and performance are
examined. A knowledge-based system to implement power subsystem reactive planning is discussed along
with its associated implications to autonomy. Interactions between control, diagnosis, and planning
functions are also considered.

AI
AC, ac
ADC
CAC
CAS
CC(E)
DC, de
FELES
FRAMES
GC
Hz, hz
K,k
KW, kw
LC
LLF
LLP
LPLMS
MSFC
NASA
PDCU

1. Nomenclature and Symbology

Artificial Intelligence
Alternating Current
Analog to Digital Card
Communications and Algorithmic Controller
Communications and Algorithmic Software
Computation and Control (Engine)
Direct current
Front End Load Enable Scheduler
Fault Recovery and Management Expert System
Generic Controller
Hertz (cycles pet second)
Kilo (1000)
Kilowatt (1000 watts)
Load Center
Lowest Level Function
Lowest Level Processor
Load Priority List Management System
(George C.) Marshall Space Flight Center
National Aeronautics and Space Administration
Power Distribution Control Unit

VII-17

RBI
RCCB

RPC
SIC
SSM/PMAD

Remote Bus Isolator
Remotely Controlled Circuit Breaker
Remote Power Conu_ller
Switch Interface Controller

Space Station Module (Autonomous) Power lVl_magement and Distribution

O SENSOR _ REMOTE [---] REMOTE _ REMOTE
RMS VOLTAGE "T- POWER CONTROLLED BUS
RMS CURRENT CONTROLLER CIRCUIT BREAKER ISOLATOR
POWER FACTOR 1 OR 3 KW 10 KW 15 KW

2. Introduction

"During Magellan's 15-month cruise to Venus, other than periods of high activity,
the spacecraft team goes through a daily ritual of monitoring the spacecraft, analyzing
telemetry, predicting performance, and planning for upcoming events."

"On a typical day, spacecraft team engineers in Denver fit'st check the status of the
spacecraft's six major subsystems: command and data, power, attitude control,
telecommunications, propulsion, and thermal. "[7]

Spacecraft operations management consistently contends with situations of the type
described above. The planning activities center around three fundamental drivers: f'LrSt, the
health of the subsystem being examined; second, the tasks that need to be accomplished by
the integrated subsystems actions; and third, the level of priorities assigned to each of the
needed tasks and how those priorities are managed. Another important consideration in
spacecraft activities planning is the overall level of intelligent and adaptive control. If
spacecraft subsystems can be regarded as autonomous, the planning activity involving them
becomes somewhat more tractable due to a greater degree of predictability within a closed
world representation for the planner (e.g., subsystems as described in [9,12]).

A planning activity configuration for a spacecraft subsystem is shown in Figure 1.
The planning involved is reactive due to needed subsystem and environmental interactions.
The reactive planning functions respond to commanded inputs, anomalies or faults within
the complete system, and how well in general the overall system is executing its current
plan. Needed changes are made either updating the current plan or producing an entirely
new plan ff the present one is unmanageable.

User

Interaction

Figure 1

_ Current Plan
Activities

Reactive I
Planning
Functions

'lAnomalies

,or Faults

System Planning Activity

Updated
w.- Plan

VII--18

3. Spacecraft Autonomy and Execution

3.1 The SSM/PMAD Architecture

The breadboard structure for the SSM/PMAD at NASA/MSFC is shown in Figure
2. The objective of the breadboard operation is to provide autonomous management of
module internal power needs in a Space Station Freedom similar structure [2,8,13,14].

LOAD PRIORITIZATION

LIST MANAGEMENT

& FRONT END LOAD

ENABLE SCHEDULER

SUBSYSTEM

DISTRIBUTOR

POWER

STAR

BUS

A
SYMBOLICS 3620 D

PDCU FAULT RECOVERY

& MANAGEMENT

EXPERT SYSTEM

(FRAMES) + DATABASE
¢_ XEROX 1186

' _'][" ' _' ae & ALGORTHIMIC

CONTROLLER
VME /10

RS 422

[RS 422 POWER DATA BUS

SCHEDULE SIMULATION
INTERFA CE/GRA PHICS

POWER

STAR

BUS I
B i

PDCU

I

B B B

LOAD LOAD LOAD LOAD SUBSYSTEM

CENTER CENTER CENTER CENTER DISTRIBUTOR

Figure 2 The SSM/PMAD Structure

VII"19

A necessary function for providing the autonomous management is that of reactive
planning. Planning in the sense of the breadboard is part of the high-level control activity.
In fact, the entire flow of SSM/PMAD activity is one of intelligent control [11], embedding

multi-agent AI systems for planning, scheduling, priority management, diagnosis, and
even low-level management. The location of the control functions and how planning is
related is shown in Figure 3.

SECONDS TO
MINUTES 10s of SECONDS _tSECONDS to SECONDS

FUTURE NEAR REAL-TIME

PARAMETERS CONTROL

fault occurrence

f _'_ l and measurement data
Planning] update

I I requests '

t Priorities) 61 Based

"_ u flJ_pifie- ,v [Control Isegmented
scneauLe schedule

or updates & commands

LLPs - Lower

Level Control

R EA L- TIME

CONTROL

voltage and
current measurements

,,1

J _ Switch
Interface

Controller

commands

GC A

• o

nn to

• t

r r

Switches i o D

c 1

EXTERNAL WORLD
power buses power to loads

Figure 3 Planning in the SSM/PMAD Control Flow i

As can be seen in the above figure, planning resides at the highest level.

Monitoring of the actual power hardware occurs at the lowest level. The system has been
configured in both 120 V dc and 220 KHz ac power versions. A CAC handles
communications flow between the lower level and the knowledge based control activities.

The present LLP CCEs are Motorola 68010 executing PASCAL based control programs,
while all knowledge based planning, scheduling, and control functions execute on Xerox

and Symbolics AI workstations utilizing their native LISP environments.

3.2 Reactivity in the SSM/PMAD Planning Activity.

The SSM/PMAD system must plan ahead to produce an initial schedule of events.

This is imperative but does not preclude the need to react to the real-time stimuli which
necessarily occur, such as anomalies, faults, or early or late event terminations. Therefore,
the system must be one which is of the type that can plan, react, and replan, such as a robot
but not necessarily with mobility [15]. Presently, the SSM/PMAD planning is achieved by
human interaction with autonomy immediately following. An autonomous planning

capability implementation is presently being examined from several aspects.

VII. 2O

-x.._/

/

First, planning must be successfully integrated with the scheduling mechanism. In
order for a planning activity to exist within the SSM/PMAD it must maintain the system
run-time autonomy capability. Therefore, reactive replanning must accept the schedule
constraints provided by the suite of FELES scheduling activities autonomously during
system execution [1,3,10]. It is possible to establish more than one plan which is
conformable to multiple schedules and vice versa. Therefore, any needed conflict
resolution is achievable through maintaining a set of on-line, run-time heuristics which

mitigate the conflicting situations.

Second, conjunctive plan goals must be achievable. The real word consists of
many complex activities to be managed, each of which is capable of levying at least one
goal on a planning activity [4]. Therefore, the autonomous SSM/PMAD planning function
allows for the achievement of both subgoals and primary goals with interrelationships
allowed as separately maintained heuristics. For example:

enable switch 11 at time period 5
and switch 12 at time period 5
and switch 16 at time periods 5 and 6
and switch 21 at time period 6

may only be achievable if the load at switch 21 is variably constrained at enable-time. So,
the planner would need to establish the constraint and communicate it successfully to the
overall system and possibly even the user interface.

Third, the run-time system must be predictable to the planner, and the planner must
be predictable and controllable from the human user domain. Therefore, the planner must
share in the model knowledge of the system domain and must react to the anomalies, faults,
and user requests, such as partial system autonomy [5,6]. This allows for the system
suppleness and conformity which often disappears whenever autonomy or high levels of
automation are introduced.

In order to implement the planner described, it is necessary to be able to manage
multiple independent knowledge bases concurrently. Presently implemented in the
SSM/PMAD system is a knowledge base management system which provides that
capability. This allows for the proper order of reasoning in the application of event
processing and reaction. Therefore, the occurrence of events in the system sets in motion
the correct knowledge relations which lead to an appropriate replan and reschedule. For
example, a user requesting manual control of a suite of switches would only cause those
switches and their successors to be affected at the lowest level priority as determined by the
LPLMS, relieving higher level priority activities from being affected. This provides one of
the key advantages to reactive autonomous planning: the capability to return automated
features of the overall spacecraft system to absolute human control, a little at a time.

4.0 Concluding Remarks

Many areas within spacecraft system environments can benefit from reactive
autonomous planning. Every subsystem which interacts, either directly or indirectly, with
other subsystems could benefit from at least an off-line monitoring application including
reactive autonomous planning. This would help alert operations personnel as to conflicts
which may arise based upon potential commanding or scheduling work-arounds during
fault periods. However, the greatest gain could be made by actually employing these
planning systems as part of the on-board capability package, yielding more intelligent

VII-21

spacecraft capable of tending to themselves during periods when human interaction is
unavailable or undesirable_

Lower long-term operations costs are achievable for the Space Station Freedom
employing reactive autonomous planning. This is also true for other complex space
operational environments as the need for increased levels of personnel is diminished. Also,
a spacecraft's safety and operability are increased as problems become recognized before
they are inu'oduced to the system, and faults are handled while the danger level is minimal.
Automated planning features are now more reasonable as more and more processing power
for space systems is becoming available (the 80386 Intel processor for the Space Station
Freedom), and general purpose processing environments can now handle complex AI
problem solutions.

5. Acknowledgement

This work was performed by Martin Marietta Astronautics Group under contract
number NAS8-36433 to the NASA George C. Marshall Space Flight Center, Huntsville,
Alabama.

6. References

[1] J.A. Ambrose-Ingerson and S. Steel, "Integrated Planning, Execution and Monitoring", Proceedings of

the AAA/1 , page 83, 1988.
[2] B.R. Ashworth, "An Architecture for Automated Fault Diagnosis", Proceedings of the IECEC 2, page
195, 1989.
[3] D.L. Britt, J.R. Gohring, and A2... Geoffroy, "The Impact of the Utility Power System Concept on
Spacecraft Activity Scheduling", Proceedings of the IECEC, page 621, 1988.
[4] D. Chapman, "Planning for Conjunctive Goals", Artificial Intelligence, 32, page 333, 1987.
[5] E.H. Durfee and V.R. Lesser, "Predictability Versus Responsiveness: Coordinating Problem Solvers in
Dynamic Domains", Proceedings of the AAAI, page 66, 1988.
[6] R.T. Hartley, MJ. Coombs, and E. Dietrich, "An Algorithm for Open-World Reasoning Using Model
Generation", Proceedings of the Rocky Mountain Conference on Artificial Intelligence, page 193, 1987.
[7] Martin Marietta Corporation, "Magellan Mission Bulletin', June 9, 1988.
[8] W.D. Miller, et al, "Space Station Automation of Common Module Power Management and
Distribution", Martin Marietta Aerospace Denver Astronautics Group, 1989.
[9] NASA, "Space Station Advanced Automation Study Final Report', Strategic Plans and Programs
Division, Office of Space Station, NASA Headquarters, May 1988.
[1(3] P.S. Ow, S_F. Smith, and A. Thin'ez, "Reactive Plan Revision', Proceedings of the AAAI, page 77,
1988.
[11] J. R. Riedesel, CJ. Myers, and B.R. Ashworth, "Intelligent Space Power Automation', Proceedings
of the IEEE International Symposium on Intelligent Control, 1989.
[12] T.M. Trumble, "Scoping Array Automation', Proceedings of the IECEC, page 201, 1989.
[13] B.K. Walls, "Exercise of the SSM/PMAD Breadboard', Proceedings of the IECEC, page 189, 1989.
[14] DJ. Weeks, "Space Power System Automation Approaches at the George C. Marshall Space Flight
Center, Proceedings of the IECEC, page 538, 1987.
[15] D_E. Wilkins, "Practical Planning: Extending the Classical AI Planning Paradigm', Morgan
Kaufmann Publishers Incorporated, _ 1988.

1 AAAI - American Association fcr Artificial Intelligence.

2 IECEC - Intersociety Energy Conversion Engineering Conference 0EEE, AIChE, ANS, SAE, ACS,
A_,, ASM_).

VII-22

AUTONOMOUS OPERATION OF A SPACE STATION FREEDOM

TYPE POWER TESTBED

A PAPER PRESENTED AT THE NASA/JSC FAULT DIAGNOSIS WORKSHOP IN JUNE 1990.

VII- 23

Autonomous Operation of a Space Station Freedom
Type Power Testbed

Barry Ashworth
Martin Marietta Astronautics Group

Denver, Colorado

Bryan Walls
NASA, George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

Keywords: Fault Diagnosis, Power Autonomy Testbed, Space Power

Scheduling and monitoring spacecraft power systems has traditionally required intensive ground
support. In general, ground support activities for power management consist of managing the planning,
scheduling, and distribution of power to required loads; diagnosis of power system faults; and control of fault
recovery. Martin Marietta, under contract since 1985 to NASA, George C. Marshall Space Flight Center, has
designed and implemented a power system testbed for Space Station modules which automates power
management and distribution as well as power system fault diagnosis and recovery.

PROBLEMDEFINITION

Reduction of ground support costs for complex space systems, such as the Space Station Freedom, is
needed but not easily accomplished. Human expert support is a must in the operation of these extremely
complex environments. Often, situations arise which require reallocation of resources already in use or
scheduled to be used. These situations almost always appear when faults occur in spacecraft subsystems. One
subsystem particularly sensitive to the reaUocation syndrome is the Power Subsystem. This is for two reasons.
First, power affects the operations of almost all other activities on a spacecraft, including life support, attitude
control, and thermal management. Second, there is always more demand for power in a complex space
environment than is available. This high demand, with the corresponding requirement for a large number of
people working around the clock to plan and schedule the use of the power, presents a large cost in complex
space systems operations. The problem is, then, bow to go about reducing that operational cost.

USE OF It/TECHNOLOGY
IN THE SSMIPMAD TESTBED

For purposes of the Space Station Module Power Management and Distribution (SSM/PMAD)
program the problem's solution was broken down into several parts and was given unique direction for
operation. The parts were Power Management and Distribution, Priority Management, Scheduling, Fault
Management and Recovery, and Low Level Deterministic Control. The unique direction was to provide an
automated testbed in which to implement the solution parts, and for that testbed to ultimately provide
hypothesis testing capability concerning power system design and management. Knowledge based solutions
were employed in all SSM/PMAD components except in the low level deterministic control. In this paper we
will examine the advanced automation concepts of the SSM/PMAD testbed, and how automated fault diagnosis
and recovery are utilized.

VII-24

POWER MANAGEMENT AND DISTRIBUTION AUTOMATION

The goals of reducing ground support costs and increasing feasibility of long term, long distance
missions motivates the automation of space power management. The Space Station module Electrical Power

System (EPS) requires the management of power to as many as 88 distribution locations, each with up to a
dozen loads - larger than anything yet flown [3]. This complexity introduces difficult issues in both hardware
and software control within the overall environment.

In automating the SSM/PMAD testbed, four primary and necessary tasks were identified. These were:
1) planning and resource allocation, 2) scheduling of power to particular switches for operation of loads, 3)
management of load priorities, and 4) fault diagnosis and recovery. Each of these represents a separate AI
knowledge agent, and three of them are now operational and deployed in the SSM/PMAD testbed at
NASA/MSFC.

PLANNING AND SCHEDULING

The planning and scheduling problems can be operationally intensive tasks. Witness the example of
SKYLAB. Mission operations had to be scheduled (and sometimes planned, especially within contingencies) in
real time by a large ground support task force. The result was up to 20 ground crew working with a flight crew
of three to handle EPS operations. Automation of the planning and scheduling tasks, especially in response to

changing power availability, becomes increasingly necessary when considering 2 to 3 times the human
involvement required for Space Station Freedom (IOC) [3].

In general, the planning and scheduling problems are NP-complete problems (the number of possible
solutions are exponential with respect to the number of activities and the available resources) requiring the
skilled use of heuristics to manage them. The scheduling problem is to optimize a set of tasks with respect to
efficiency within a given set of temporal constraints. If every possible solution were to be analyzed the problem

might never be solved.
In the domain of spacecraft power systems the planning]scheduling problem requires a large amount of

knowledge about the loads being scheduled. Loads have diverse and changing energy requirements. Loads may
also be constrained to operate in determined periods of time based on, for example, the visibility of certain star
clusters; on the sensitivity of the load itself (e.g. does it require a minimal amount of vibration to operate

correctly); and even on the availability of crew members to operate the loads in a required manner.

LOAD PRIORITY MANAGEMENT

Loads also have priorities, life support systems being one of the most critical. Management of these
priorities is an important function. The necessity for a load to stay active may change in time due to both
external events and to maturing functions internal to the load (a heater bringing process elements to a sufficient

operating temperature, for example). As the priority landscape changes, the interrelations of the overall system
may also change, requiring an appropriate management response to these changes.

FAULT DIAGNOSIS AND RECOVERY

In the event of a fault in the power system, automation of the diagnosis of the fault is required if power

management autonomy is the goal. The process of diagnosing a fault in the power system and scheduling
around the failed parts of the system defines a mode of fault recovery.

The primary motivation of automated fault recovery is to continue operation with minimal interruption
of the loads. By scheduling around the affected parts of the power system it becomes possible to manually

repair the affected regions of the power system for subsequent use, without shutting down the entire system.
There may be many different faults occurring in a power system. These include a single hard fault

detected by a switch tripping (this is usually caused by an open or a low resistivity short within a circuit). If a
switch is not operating correctly a masked fault may occur where the switch does not trip but the one above it
(closer to the source) does. Fault diagnosis is also complicated by multiple independent faults occurring in the
same time period. The diagnosis of faults depends to some degree on boththe placement and accuracy of sensors
for fault detection as well as the ability to manipulate switches in the power system in an attempt to isolate the
location of the fault and provide confmming evidence of a particular fault.

-x._j

Vii-25

Manipulation of switches in the power system domain as a fault isolation technique is dependent on the
hierarchical nature of the switches. This is guaranteed by the acyclic nature of the control for power systems

(where powe r flows from the source to the loads, guided by switches).

LOW LEVEL DETERMINISTIC CONTROL

The actual control of the power switchgear is provided by deterministic software. An important
function of the deterministic control element is to act as the intermediary between the power management
knowledge agents and the power switching hardware. This level of software quickly accomplishes those
activities which are at a higher level than can be accomplished by the switchgear, but doesn't require the
"thinking power" of higher level systems. Normal switching at the lowest level is guided by a schedule of
events. Redundant power bus sourcing is provided at this level, as are load sheds for violation of power
limitations.

THE USER INTERFACE

Automated systems require very capable user interface functionality. In using the SSM/PMAD, a user
may engage its services to assume manual control or collect data at any time. Therefore, the user interface must
have access to all functionality which may be affected by a user's actions. In providing this capability, it is
important not to require the user to possess detailed knowledge of the entire suite of system functionality. This
requirement makes the user interface for the SSM/PMAD an intelligent service which integrates its services
with those activities carried on by the other functions within the system.

DESCRIPTION OF THE APPLICATION

The deployed SSM/PMAD testbed may be described at a number of levels. At the bottom level is the
switchgear hardware while at the top level scheduling, priority management, and fault diagnosis reside. In
between these levels exists software and hardware algorithms designed to further enable the automation process,
supporting the higher processes. We will describe the supporting hardware and software of the testbed and then
talk further about the scheduling and fault diagnosis software. Figure 1 shows the topology for the 120 V dc
version of the SSM/PMAD testbed, which was made operational at NASA/MSFC in October 1989 (a complete
20 kHz, 208 V ac version, including all knowledge agents became operational in December, 1988). The
workstation Knowledge Base Management System (KBMS) software, KNOMAD, depicted in Figure 1 is to be
installed in June 1990 and will provide parallel knowledge agent control.

THE POWER SYSTEM

The current implementation defines eight lowest level processor (LLP) units on which resides the low
level deterministic software. Each LLP interfaces to two switchgear interface cards (SIC), which in turn
interface to one analog to digital card (ADC) and as many generic conu'oller cards (GC) as there are physical
switches. The current implementation defines up to 18 switches being controlled per LLP.

From the perspective of power system automation there are two features of the physical power system
to be noticed. The first feature is the architecture; the power system is laid out as a distributed system. Each
LLP controls a set of switches. If one LLP fails the other LIPs are not affected (in general). In the current
implementation there are two special LIPs that control distribution of power to six lower level units, each with
their own controlling LLP. This provides the hierarchy of switches. It is important to note that the LLPs are
processors, so the power does not actually flow through them. They serve as controllers for the actual power
distribution hardware (similar to a microprocessor controlling the flow of fuel to an automobile engine). The
second feautre is communication; the LLPs are used for communicating both switch commands (open and close)
to the switches as well as switch and sensor information from hardware back to the fault management and
recovery knowledge agent, FRAMES (Fault Recovery and Management Expert System).

SCHEDULING

Scheduling the activities needing power is the fkrststep in the operation of power management and
distribution. Scheduling is performed by the MAESTRO knowledge agent and is initiated by the user and
subsequently performed whenever there is an unforeseen change in the power system. The goal of the

VI_-26

scheduling process is to make use of the available power in the most efficient manner possible, taking into

consideration load dynamics and resource availability, as well as inter- and intra-task relationships.

/ram

POWER

STAR

BUS

A

POWER

STAR

BUS

B

PDCU B

....................................2DATABUS_/......................_E_.._.A_

• SENSOR -LREMOTE 4_ REMOTE LLP- Lowmt Level ProcessOr (80386)
VOLTAGE "rPOWER BUS PDCU. Power Distribution Control Unlt

CURRENT CONTROLLER ISOLATOR SIC - Switchge_r Interf_e¢ Controller

1 OR 3 KW 1.5 KW AID - Analog to Digital Card

FIGURE 1 -POWER SYSTEM TOPOLOGY

Vii-27

When a fault occurs during operation, FRAMES diagnoses it and informs MAESTRO as to the
identity of the switches which are no longer available for scheduling. Rescheduling resumes as many activities
as possible and isolates the faulted areas until they are repaired. Rescheduling will also take place if the user
specifies that there will be a change in the available power to the system for some future period of time.

FAULT RECOVERY AND MANAGEMENT

The purpose of FRAMES is to keep the power system operating as effectively as possible, especially
in fault situations. This is done by using a model of the power system network, keeping track of both what is
scheduled to happen and what is actually happening in the power system to recognize any discrepancies in the
power system operation. When a discrepancy is detected FRAMES analyzes the situation to determine a fault
that will account for the discrepancy.

The LLPs communicate various data about their switches and sensors to FRAMES. This includes
amperage data, switch status information, and trip related information. When FRAMES discovers that there are
symptoms indicating a fault in the power system, analysis determines what class of faults may account for the
symptoms, and further testing may isolate the fault to a particular location in the power network. Once the
fault location has been isolated as much as is possible (given available information from sensors and switches),
FRAMES identifies to the scheduler those switches that are no longer useable. The scheduler uses this
information to schedule loads on the remaining usable switches.

FRAMES, as managed within the KNOMAD environment, is designed to diagnose independent faults
which either occur simultaneously in multiples or singularly. The types of faults FRAMES is designed to
diagnose include hard faults, soft faults, masked faults, cascading faults, and incipient faHts.

Hard faults are defined as faults that cause switches to physically trip. Soft faults are illegal uses of
current in the power system, such as resistive shorts to ground. Incipient faults are situations that will become
hard faults in a reasonably short time if nothing is done to avert them.

The user interface is attached as an internal knowledge driven FRAMES activity. This way, a user can
gain access to the complete system structure through one common representation. A user can monitor the
system or assume control at this single interface. The only other interface is provided to the scheduling agent
for purposes of initialization.

THE AI DOMAIN OF THE SSM/PMAD

The primary application of AI that we are addressing is the automation of a power management
environment utilizing multiple embedded knowledge agents (this does not consider the actual management of the
multiple cooperating SSM/PMAD knowledge activities, which is a complete topic itself). This is done to
greatly decrease the cost of developing and operating a very complex Space Station Freedom type module power
management and distribution environment. The interaction of the knowledge agents with the real-time control
elements of the system is quite innovative and presents extremely sophisticated and complicated problems with
respect to information flow within the complete system. Hgure 2 shows a logical flow of the information
between the modules of the power system test bed.

The system distn_butes intelligence throughout the test bed as much as possible. It is made up of three
artificial intelligence systems; the scheduler, the priority manager, and the fault management and recovery
module. In addition, the LLPs contain rudimentary knowledge about power distribution and provide the low-
level, activity driven, fast control of the switches. The LLPs must also contain rudimentary knowledge of what
level of communication must take place with FRAMES in both nominal and fault situations.

The SSM/PMAD testbed may be used to test design hypotheses for the power distribution and control
elements for the Space Station_Freedom. This is done while minimizing human interaction with the overall
process (e.g., a typical schedule for power consumption activities can be maintained and applied to more than
one power consumption configuration) and allowing vigorous exercise of power components and loads. The
high level AI embedded knowledge agents, running with the complete system in real-time, allow this.
Otherwise, the SSM/PMAD would be just another large spacecraft-type power management and distribution
system requiring manual processing and control at every juncture.

Multiple computational and reasoning agents cooperatively and autonomously manage the power
system in both normal and fault situations. In particular, scheduling and priority management reside on a
Symbolics LISP machine, the global level fault management and recovery system resides on a Solboume 5/501
general purpose workstation, and the low level fault management and detection functions are in the lowest level
80386 Intel processors. These independent agents are responsible for their own areas of control, to respond to

V

VII-28

situationsaseffectivelyaspossible.The lowestlevelprocessorscontainknowledge needed forfastresponse
while operations at the scheduler may take more time without adversely affecting autonomous system operation.

The three AI systems interact such that when a hard fault occurs the power system is immediately
protected by the smart switchgear in less than a microsecond. FRAMES recognizes the new configuration and
decides ff any other actions need to take place. FRAMES diagnoses the fault, recommends corrective action, and
where appropriate may autonomously implement the corrective action. A determination is made if the current
loads schedule has been pertmbed by the anoma/y and if so, the scheduler is directed to reschedule the loads for
the remainder of the crew period. The priority manager then generates a new priority list about the loads which
is downloaded to the LLPs. A similar sequence autonomously occurs in the event of a soft fault (except the

switchgear doesn't trip) or when new clirections or power allocation levels are sent down to the test bed (through
the operatorinterfaceinthetestbed). The testbed operatormay alsotakemanual controlof thesystem atany
time.

Figure 3 shows a basic diagram of the operation of FRAMES. FRAMES makes use of a model of the
power system network (the switches, sensors, and cables) to determine both where faults may occur and how to
further isolate faults.

C USER /)PLANNING

I USER INPUTS

SCHEDULER

PRIORITY
LIST

PRIORITY MANAGER

ISOLATED
FAULT LIST

FAULT MANAGEMENT

AND RECOVERY

LOAD ENABLE

_ SCHEDULE

ULT

INFORMATION [I i OOO
HARDWARE DATA

POWER
HARDWARE

0 0 •

FIGURE 2 - SSM/PMAD LOGICAL INFORMATION FLOW

VII-29

As data from the LLPs is sent to FRAMES, any tripped switches or violations in Kirchoffs Current
Law indicate fault situations. Once fault situations are detected, further analysis is done and, depending upon the
situation, manipulation of switches occurs to further isolate the fault and corroborate the diagnosis. For
example, suppose_-a Short below the-3kW switch (po_nfPin i_l). _ swiiches below it will
all trip on under voltage and the 3kW switch will trip on over currenL This will indicate to FRAMES that first
all the tripped switches should be opened (turned off). Next the 3kW switch is turned on and then, ff it does not
retrip, off. The action of turning the 3kW switch on trips it again. This indicates to FRAMES that the fault
must be below the 3kW switch and above the lkW switches.

CRITERIA FOR THE SUCCESSFUL
SSM/PMAD TESTBED

There were two major goals that were achieved in this application of artificial intelligence to Space
Station power automation. The first goal was autonomous operation. We have successfully incorporated
autonomy into our application and tested it by injecting various faults and letting it recover and continue
operation. This has also shown the effectiveness of our system by successfully incorporating knowledge,
eliminating the need for large amounts of manpower to operate the SSM/PMAD.

The second goal was to design and implement distributed control of the system. This has also been
successful. At the lowest level, each LLP autonomously controls its own switches, reporting data to the higher
level agents. The power system can operate autonomously for periods of time even if the higher level agents
should for some reason be unavailable.

An extra but very important feature of the SSM/PMAD testbed is its usability as a power system design
test element which can take on major changes very rapidly. For example, a new topological design for the
distribution of power can be incorporated into the SSM/PMAD operational knowledge agents via the

Scheduler

Communications

Control

Fault

Diagnosis
Exp

Heuristic

Knowledge

Process

Dam

Domain
Model

Da_-
Base

Dam _ Control

FIGURE 3 - FRAMES OPERATIONAL INTERACTION

FRAMES model representation and fault diagnosis rules. This provides NASA with important flexibility in
analyzing actual power system componenU'y before deployment into a real spacecraft, giving strong cost savings
by trapping development problems early.

vIr-30

FUTURE AND FURTHER ACTIVITIES

INTERMEDIATE AUTONOMOUS SYSTEM ACCESS

Intermediate levels of autonomous control is a necessary capability for the future SSM/PMAD testbed.
This will allow a user to manually seize certain elements of the testbed while it continues automated operations
with little or no impact. A system which is truly representational of an actual operational system should
possess this characteristic.

PLANNING ACTIVITY

The knowledge agent aggregate must possess a planning capability unlike that which is used in
scheduling. This is a necessary future enhancement for completion of the functionality of FRAMES during
intermediate autonomous requests and operation. The planning agent will provide the necessary capability to
review the existing testbed configuration, the user's goals, and the future needs of the automation function to
produce a plan for minimal negative impact results.

SIMULTANEOUS MULTI-AGENT KNOWLEDGE MANAGEMENT

The SSM/PMAD possesses a simultaneous multi-agent knowledge manager function called KNOMAD

(for KNOwledge MAnagement & Design). It utilizes a distributed database management function to provide a
modified blackboard management capability [7]. This, along with the integrated capability of knowledge sharing
through object-oriented frame representation, allows the multi-knowledge-agent concept to function within a real-
time hardware environment. Growth of this system to include time domain dependencies is critical for successful
Intermediate Autonomy requests.

DEMONSTRATION VIDEO TAPE

A demonstration video tape of the SSM/PMAD testbed at the NASA, George C. Marshall Space
Flight Center is currently in production and wi/l be available in 1uly of 1990. The video will demonstrate the
autonomous operation of the system, even during the occurrence of faults.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Barry R. Ashworth. An Architecture for Automated Fault Diagnosis. In Proceedings of the 24th
lntersociety Energy Conversion Engineering Conference, 1989.
Barry R. Ashworth. Reactive Autonomous Planning in Spacecraft. In Procee_ngs of the Aerospace
Applications of Artificial Intelligence Conference, 1989.
Robert T, Bechtel. MSFC EPS Automation; Skylab to Space Station flOC) comparison chart,
1989.

William D. Miller, et al. Space Station Automation of Common Module Power Management and
Distribution - Interim Final Report. NASA Contractor Report 4260, November, 1989.
Joel D. Riedesel. A Survey of Fault Diagnosis Technology. In Proceedings of the 24th Intersociety

Energy Conversion Engineering Conference, 1989.
Joel D. Riedesel, Chris J. Myers, and Barry R. Ashworth. Intelligent Space Power Automation. In
Proceedings of the Fourth IEEE International Symposium on Intelligent Control, 1989.
Joel D. Riedesel. Knowledge Management: An Abstraction of Knowledge Base and Database
Management Systems. NASA Contractor Report 4273, January, 1990.
Bryan K. Walls. Exercise of the SSM/PMAD B_ldboard. In Proceedings of the 24th lntersociety
Energy Conversion Engineering Conference, 1989.

VIf-31

A SURVEY OF FAULT DIAGNOSIS TECHNOLOGY

A PAPER PRESENTEDAT THEIECEC IN AUGUST 1989.

L

VII- 32

A SURVEY OF FAULT DIAGNOSIS TECHNOLOGY

v

Joel Riedesel
Martin Marietta Astronautics

Denver, Colorado

ABSTRACT

Power systemautomationrequiresintelligentmethodsfor diagnosing
faultsthat mayoccurin the system. This papersurveysexistingtechniquesand
methodologies availablefor faultdiagnosis. The techniquessurveyedrunthe
gamutfromtheoreticalartificialintelligenceworkto conventionalsoftware
engineeringapplications.They are shownto define a spectrumof
implementationalternativeswheretrade-offsdeterminetheirpositionon the
spectrum.Varioustrade-offsincludeexecutiontime limitationsand memory
requirementsof the algorithmsas wellas theireffectivenessinaddressingthe
faultdiagnosisproblem.

MartinMarietta,undercontractsince 1985to NASA, MarshallSpace
FlightCenter, is continuingthe developmentof technologiesand methodologies
for use in the automationof power managementanddistribution.

1. Introduction

The fault diagnosis problem must be considered in context. The usefulness of

diagnosing faults is dependent upon how that information is used. This information

eff/cacy is probably the most important criteria in determining how fault diagnosis

technology should be used in a system.

The Power System Automation group at Martin Marietta has researched and

developed a power system automation test bed, Space Station Module Power Management

and Distribution (SSM/PMAD), delivered to NASA/MSFC in December 1988 [12]. This

test bed has four major components: Scheduling software, fauh diagnosis software,

algorithmic software, and hardware (making up the switches and controllers). This test

bed is used in an autonomous fashion. Activities are described to the scheduler and

subscquendy scheduled on particular switches at specific times. The scheduler takes into

account numerous constraints regarding power availability, resource availability (crew,

tools, etc.) and others. The schedule generated is used by the algorithmic software to

command switches on and off and ensure proper power usage through those switches. If a

fault occurs in the hardware the algorithmic software notifies the fauh diagnosis software of

the symptoms seen as a result of the fault. The fault diagnosis software is then responsible

for isolating where the fault occurred and what the fault was. This may require farther

testing by commanding switches on and off to get more information. Once the fault has

been isolated, the scheduler is notified of any switches that are no longer operable. The

VII-33 I

scheduler then reschedules the activities to take advantage of the remaining switches in the

breadboard...

Thus, in this context, fault diagnosis is used to autonomously recover from failures

in the power system hardware. The specificity of the conclusions generated from fault

diagnosis is very important. The more accurately a fault may be isolated the better the

power system may be utilized.

Consider figure 1. This figure shows power entering a Remote Controlled Circuit

Breaker (RCCB) that can switch 15k watts. The output of the RCCB feeds three 3k watt

Remote Power Controllers (RPCs). Each 3k RPC feeds eight lk RPCs, All of these

switches may trip due to fast trip (F-T), over current, and under voltage (U-V). The fast

trip occurs at 300% of power, the over current at 120_ and the under voltage at _ro

voltage. A load may be powered beneath any lk RPC. Figure 2 shows the symptoms

resulting from a low impedance short injected at point A. Figure 3 shows the symptoms

resulting from a low impedance short injected at point B with the assumption that the lk

RPC above it has a failed current sensor. As can be seen, the symptoms are identical If

the fault diagnosis software cannot distinguish between the faults in some way, aU the

switches from the 3k RPC down to the lk RPCs below it wiU not be available for use. In

figure 3 it is clearly the case that we only want to diagnose the single lk RPC as not being

available for use.

3k RPC

Figure 1

VII-34
2

,._j

3k RPC A

lk RPC

Load

Figure 2 Figure 3

Section two defines the fault diagnosis problem in more detail. Section three

surveys existing techniques and methodologies for solving the fault diagnosis problem. It

outlines criteria used in comparing techniques as well as describing limitations of various

alternatives. Finally, section four gives a brief conclusion.

2. The Fault Diagnosis Problem

V

When a fault occurs a set of symptoms occur. This was shown in figure 2. A fault

is a one to many mapping to symptoms. The problem of fault diagnosis is to go in the

reverse direction. Given a set of symptoms, what fault(s) account for them. This is a

many to one mapping. Furthermore, different faults may share symptoms. In the case of

the example above, the two different faults shared the symptoms exactly. Figures 4 and 5

are alternative ways of viewing tills problem.

Shared Symptoms F(1) S(1)

F(2 .S(2)

F(n S(m)

Figure 4 Figure 5

The fault diagnosis problem is complicated by the possibility of multiple faults

occurring. In this case a single set of symptoms is given but no one fault describes the

VII-35

3

symptoms sufficiently. The problem is now even more complex. Potentially, one could

examine every combination of faults that could lead to the symptoms, a 2 n problem space

where n is the number of faults possible. This naive approach would be ridiculous to

implement though. Essentially this problem is a set-covering problem. The set is the set of

symptoms. Faults are used to cover the set. There are pattern recognition algorithms in the

field of machine learning that perform set-covering which could be applied here. Various

heuristic approaches apply as well.

Whereas in single fault diagnosis it is possible to have a very high probabi_ty of

correctness in the conclusion, in multiple fault diagnosis this probability has the potential of

dropping dramatically.

Fault diagnosis is not a static problem. By this it is meant that fault diagnosis may

dynamically perform various tests to isolate the fault. This updates the set of symptoms

that are relevant to the fault(s). Thus, any algorithms that are defined ought to take into

consideration this dynamic nature of the problem space. Furthermore, during diagnosis of

a fault, another fault may occur. How do fault diagnosis algorithms update their symptom

sets appropriately?

3. Techniques and Methodologies

In this section the fault diagnosis problem is #oven a very general model which is

specialized by the various techniques and methodologies. The issues in fault diagnosis are

described including how they fit into the model and how the techniques and methodologies

are applied to them.

3.1. A FaultDiagnosis Model

Figure 6 depicts the model of fault diagnosis. In general, every fault diagnosis

implementation consists of the parts in this model in some form. The box labeled Model is

used to represent the Artifact. The use of the Simulator and artifact are to provide

Expectations and Data to the Problem Solver. The problem solver consists of three parts;

discrepancies between the expectations and data are first identified producing symptom

sets, hypotheses are then generated based on the symptom sets, and finally, testing and

probing are performed todiscriminatebetween possiblehypotheses and tocOnfLrm or

corroborateconclusions.

VII-36

4

w

Simulator Expectations

Artifact Data

I Model [

%
/ \

/

Discrepancy

Identification._ Hypothesis
Generation

Problem Solver

Testing/ I
Probing .4D,-

Commands

Figure 6

3.2. Issues in Fault Diagnosis

There are a number of issuesinfaultdiagnosis.These issuesrelateto the

alternatives available in their solution. Each alternative has implications on computation

required by the CPU, space requirements, and their effectiveness in _ssing the fault

diagnosis problem. Briefly, these issues are:

•The Simulator:.Qualitativevs.Quantitative

•DiscrepancyIdentification.ComputationofSymptom Sets:Staticvs.Dynamic

•Hypothesis Generation: Model-based, Rule-based,Completeness

•Singlevs.MultipleFaultIdentification

3.2.1. The Simulation Issue

The main questioninsimulationdealswiththesufficiencyof a qualitativemodel

versus the necessity of a quantitative model. The trade-off in qualitative versus quantitative

models isintheamount ofprocessingnecessarytogeneratean expectation.Forthe

electronic circuit domain, there exist some good quantitative simulafiop tools. For other

domains, such as a nuclear reactor, there are no general purpose simulators available.

There are at least two reasons why a qualitative model may be desired. One, in the absence

of robust, quantitative simulators, a qualitative simulator must suffice, And two,

VII-37
5

qualitative simulators may be sufficient to provide the necessary expectations for the fault

diagnosis problem, while at the same time economizing on the processing necessary to

produce the expectations.

A model for simulation may be represented in many forms. The component-

centered model [11] provides the most direct mapping between the model and the artifact as

well as being more accessible to a user. The difficult problem in modelling is to represent

the artifact in such a way that the possible discrepancies are readily identifiable. In multiple

fault diagnosis, deKleer introduces a representation that combines the model and the

discrepancy identification into one [10]. Other possibih'ties include analyzing the artifact to

determine the information it can provide and building a qualitative model that corresponds

to the information provided by me artifact. =: i = =

The effectiveness of a fault diagnosis algorithm will be dependent upon the quality

of a qualitative simulation. A quantitative simulation should be able to provide for a

complete account of expectations, while a qualitative one may not be accurate enough.

3.2.2. The Discrepancy Identification Issue

Identifying the symptom sets of a fault is probably the easiest part of the fault

diagnosis problem, although the computation of symptom sets has implications on CPU, _=

memory, and effectiveness. A symptom set is derived from the difference between the

expectations from the model and the data from the artifact. However, ff the model is

wrong, some symptom sets may be derived which the problem solver needs to recognize as

a fault in the model

The symptom set identified as discrepancies between the expectations and the data

is then used and compared against the possible symptom sets. The computation of the

possible symptom sets for comparison against the symptom set found is where the trade-

offs become apparent.

Symptom sets may be computed statically by analyzing the artifact for all the

possible faults and generating a table of symptoms and faults [12]. Symptom sets may also

be computed statically by analyzing a component-centered model to produce a similar table.

This atlows the computer to generate the symptoms automaticatly. Drawbacks to this

approach ate based on the ability of the model to represent the artifact completely enough to

produce all the symptoms and faults that the artifact would produce. This may require a

quantitative model. Symptom sets may also be computed dynamically based on the modeL

data is collected from the artifact and expectations are collected from the model, any

discrepancies suggest that a symptom set should be computed. For example, in the

6

VII-38

electroniccircuitdomain, ifa discrepancyisnoted,heuristicsmay be used todetermine

possiblefaultsbased on thediscrepancy.Each of thepossiblefaultsisthen plugged into

the model todeterminethe symptoms thatwould result[15].These arc thencompared with

theobserved symptoms from the artifact.Another method istorepresentthe dependencies

between components inthemodel and when a discrepancyisdetected,note allthepossible

components thatcould have faults,based on thedc1_ndencies,thatcould possiblyhave

produced the discrepancy[10].

Static computation of symptom sets arc more difficult initially and require more

processing.They alsorequirespace tostoreallthe symptom sets.Their advantage isthat

faultdiagnosisprocessingmay be spccdcclup. Dynamic computation of symptom sets

requiresCPU atthetime of thefaultbut has littlcoverhead inmemory requirements.Ifa

quantitativemodel isused dynamic computation may be very expensiveinterms of CPU

usage. On theotherhand, ffan artifacthas many components, each of which has various

typesof faults,staticcomputation may produce very bulky symptom and faulttables.One

interestingpossibilityistocompute thesymptom and faulttablesup frontand cntc_"these

intoa machine learningprogram thatwillproduce rules.These rulescan thenbe used inan

expertsystem by enteringrun-timesymptoms totheprogram and gettinga faultback.

Incorporatingtestingcapabilities into machine generatedrulesmay be more difficult.

The completeness of thesymptom setsisalsoan issueforeffectiveness.Ifsome

symptom setsarc not ableto bc computed or have not bccn determined to be possiblethen

some faultsmay not be diagnosable.

3.2.3. The Hypothesis Genertm'on Issue

The main issueinhypothesis generationisinbeing ableto generatetheright

hypotheses.The more accuratelyhypothesescan be generatedthe more efficientthe

solutionmay be. Alternativesavailablein hypothesisgenerationarcnllc-based,and model-

based.

A rule-basedapproach to generatinghypotheseswillbc based on the given

symptom setsand produce a number of possiblefaultsthataccount forthesymptom sets.

Problems may arise from incompletenessinthemodel as wellas incompleteness in the

rules.

A model-based approach to generating hypotheses attempts tO reason from first

principles about the artifact to determine what faults may have accounted for the symptoms.

To do this the model of the artifact must be able to represent the artifact to the degree

necessary to generate symptoms from faults. In one approach, possible faults arc

VII-39

hypothesized and injected into the model to generate symptoms. In the other, the model

represents the dependencies between components of the artifact to a sufficient degree_ so

that hypotheses may be "read off' of the model based on the #oven symptom sets.

Hypothesis generation is related to the symptom sets that can be generated from the

model of the artifact. Thus, the effectiveness here is related to the symptom sets as well as

the completeness of the rules in analyzing the symptom sets or the model in automatically

computing the symptom sets for hypothesis generation.

3.2.4.The SingleversusMultipleFault Issue

In addition to the problem of mapping symptoms to faults there may be multiple

dependent and independent faults giving rise to complex sets of symptoms. Fault

diagnosis solutions must be able to determine when to generate multiple faults for a set of

symptoms when the domain has that possibility.

In one approach, the set of symptoms is seen as a space to cover. As each fault is

hypothesized, it covers some of the symptoms in the set. If there are remaining symptoms,

additional faults may also be hypothesized [15]. In the approach mentioned above where

faults are "read off' of the model, possible faults that account for the symptoms may

include more than one actual fault; the minimal faults are always chosen first.

3.3. A Trade-off Matrix

Figure 7 illustrates trade-offs between the CPU and memory for the issues

discussed above. The other major trade-off is effectiveness, however, effectiveness

becomes more interesting in particular algorithms. In the figure we can see that using a

quantitative approach to simulation will have a potentially large impact on CPU. We can

also see that the memory requirements for quantitative versus qualitative simulation don't

have any obvious trade-off. For symptom set generation, the static approach will need

more memory to store the symptom sets while the dynamic approach will need to use CPU

during run time to compute the symptom sets. For hypothesis generation the model-based

approach may require more memory while CPU requirements are not an obvious advantage

between rule-based and model-based.

VII-40 8

Simulator

Symptom
Set

Generation

Hypothesis
Generat_n

Qualitative

Quantitative

Static

Dynamic

Rule-Based

Model-Based

CPU Memory

V

V

V

q

Figure 7

3.4. Example Systems

In this section some example systems for fault diagnosis are presented. The

particular architecture chosen to specialize the fault diagnosis model has implications on the

effectiveness of the solution. This includes whether the architecture handles multiple faults

as well as single faults, whether it is a complete solution, i.e. earl it be verified that every

fault that can occur in the system can be mpresente_l and diagnosed with the architecture,

and how easy it is to implement.

Three actual architectures that vary quite a bit will be discussed here. There are

certainly more architectures in existence, but these three are representative of the variety of

solutions possible. These architectures are: SSM/PMAD, The Patchwork Synthesis

Algorithm, and deKleer's Diagnosing Multiple Faults algorithm.

x.._i

3.4.1. SSMIPMAD

The SSM/PMAD system was developed by extensive front-end analysis of the

power system being modeled [12]. The symptom sets for all the possible faults were

computed statically by hand by placing faults at various places in the power system

topology. Each fault would then cause the hardware to behave in a set way. This was

VII-41

9

done before the hardware was actually built and required a power system engineer to help

extensively with the knowledge engineering.

The function of noting discrepancies between expected behavior and actual behavior

was perfom_ by conventional algorithmic processes. A discrepancy was identified by

noting that a switch tripped due to under voltage or over current for example. Other

discrepancies could be identified by noting that KirchotTs Current Law didn't hold for a

node. As discrepanciesareidentifiedtheyarecommunicated to thefaultdiagnosisprogram

(runningon a Xerox 1186 LISP machine) which uses them togeneratehypotheses.

It is at this point that the previously generated symptom sets come into use. The

symptom sets were used to def'me a large number of rules to discriminate between possible

faults. Then, when symptoms are identified and communicated to the fault diagnosis

program, they are used by the rules to come to a hypothesis. For examp|e, ff the situation

in Figure 2 occurred, the symptoms would be given to the fault diagnosis program which

would be able to determine at least the two fault scenarios in both Figure 2 and Figure 3.

At this point the fault diagnosis program would open all the affected RPCs. Then the 3k

RPC that tripped on fast trip would be closed. If the 3k RPC trips on fast trip at this point

we have the situation of Figure 2. If the 3k RPC does not trip when we close it, we go on

and start closing the switches below it. When we get to the last switch in Figure 3 and

repeat the fault situation Coecause we connect power to that short again), we know that we

have a short at point B and that the lk RPC above point B has a faulty sensor.

The fault diagnosis program for SSM/PMAD has proven to be very efficient. It

only addresses single faults and therefore is not effective for multiple faults. Its

effectiveness depends on how complete the analysis of the symptom sets was. The

drawback we found with this approach was in its modifiability. It is very difficult to

change the knowledge as the power system topology changes. This is more a symptom of

the particular en_g of the knowledge in our system than rule-based systems in general.

However, ff we wanted to apply our system tO other power system topologies that have

different switch characteristics, we would have to generate a new symptom and fault matrix

for that system.

3.4.2. The Patchwork Synthesis Algorithm

The Patchwork Synthesis algorithm addresses fault diagnosis for terrestrial power

systems [15]. It makes use of algorithmic processes as well as a rule-based approach to

hypothesizing faults which is based on OPSS. It also keeps a model of the power system

VII-42

I0

for generating symptom sets. This algorithm addresses both single and multiple faults in a

heuristic fashion.

In Patchwork Synthesis, algorithmic processes manage the discrepancy

identification problem. Discrepancies are then communicated to the fault diagnosis

program in the form of symptoms. This is analogous to the SSM/PMAD approach. At this

point the similarity ends. The Patchwork Synthesis approach uses rules that are triggered

based on certain patterns in the symptoms. These rules then hypothesize various fault

classes. Various faults, based on the fault classes and symptoms, are proposed to account

for the symptoms. These are injected into the model of the power system to predict the

symptoms that result. After collecting the sets of symptoms resulting from modelling the

various faults, they are then used to cover the original symptoms of actual faults. Thus, a

symptom set for a hypothesized fault can be subtracted from the original symptoms. If no

symptoms remain that fault is hypothesized, otherwise other faults are also hypothesized.

The goal is to get the best cover of the symptoms without much unnecessary overlapping

and unreported symptoms.

This algorithm is more robust than SSM/PMAD. It handles multiple faults and

unreporte, d symptoms much more effectively. Obviously, more work has to go into

developing the model so that symptoms may be generated correctly. This is in addition to

the knowledge engineering needed to hypothesize faults based on original symptoms. Here

we see one difference resulting from more work up front with slightly more CPU in fault

discrimination resulting in a system that seems to be more effective. One difference though

is that in SSM/PMAD, actual testing of the power system can be done while the Patchwork

Synthesis algorithm does not do any testing except by simulation.

3.4.3. Diagnosing Multiple Faults

The architecture for diagnosing multiple faults [10] proposed by deKleer is based

on the Assumption Based Truth Maintenance (ATMS) algorithm [9]. This algorithm

diagnoses single and multiple faults, works with unreported symptoms, computes

symptom sets dynamically (yet efficiently), uses a form of qualitative simulation and

generates hypotheses using a model. The algorithm hinges on the ability to represent the

model of the artifact in the ATMS. The possible faults for a symptom are then "read off" of

the ATMS and combined to generate a set of minimal fault candidates.

To illustrate this method Figure I is reproduced as Figure 8 with annotations. The

annotation on each switch is simply a symbol representing the assumption that the switch is

Vli-43
11

operating correctly. The cables arc not represented as being faultable per se and represent

the dependency of the lower switches on the upper switches.

i'I A

Figure8

Assume that switches 7 and 9 trip. This represents a symptom set of two

symptoms. Initially we look at switch 7. We see that if assumption G, C, or A was

wrong, that we could account for switch 7 giving a symptom. For switch 9 our set is {I,

C, A}. These assumptions arc recorded at all the switches and are retrieved at no cost of

CPU. The next step is to hypothesize the faults that could account for these symptoms.

Initially we have an empty set of faults: 0. We take the first set of assumptions for switch

7 and add each of them to all of the fault sets so far:. [{G}, {C}, {A}]. Then we continue

by adding the set of assumptions for each symptomto the fault sets. _Ad_tipnally, we only

keep the minimal fault sets. When we add the set of assumptions for switch 9 we get:

[{G, I], {C, I}, {A, I}, {G, C}, {C, C}, {A, C}, (G, A], {C, A}, [A, A}]. This

minimizes to: [{(3, I}, {C}, {A}]. What this final set tcUs us is that if we had a fault and

both assumptions G and I arc wrong (that is, switches 7 and 9 arc not operating correctly),

then that would account for the observed symptoms. Or, if assumption C was wrong, that

would account for the observed symptoms, etc. Obviously we would want to look at the

minimal faults first.

In the above example where we ended up with final fault hypotheses of {G, I},

{C}, and {A} we might wonder if perhaps both assumptions {C} and {I} might be

wrong. The above representation does account for this. Figure 9 shows the lattice

representation being used to minimize the candidates. If testing shows us that the

candidates alone do not account for the observed symptoms, we can move up the lattice to

test more complex fault scenarios.

VII-44
12

{A,G,CJ}

{A_,I}

0

Figure 9

This algorithm is very efficient at run time. It has two drawbacks though. First,

the dependency network representation may give rise to 2n possible assumption sets where

n is the number of components being represented. The second drawback is that of

representation in general. It is very difficult to represent a complex domain (such as power

system topologies where faults can occur in more than one way based on characteristics of

switches, etc.) in the ATMS model. The example given looks good but it is really only

saying that a switch either works or doesn't. In more realistic domains we may have to

generate many assumptions for each switch: the fast trip sensor works, the I2t sensor

works, the under voltage sensor works, etc. This is a very complex task and may end up

requiring large amounts of space to store the necessary ATMS network.

4. Conclusion

The above examples as well as the discussion of the various issues have shown that

there exist a wide variety of alternatives available when a particular fault diagnosis system

is to be specialized from the general model. Depending upon the domain in question and

the various constraints available (CPU, memory, knowledge engineering), a number of

different solutions may be arrived at.

It is certainly possible for most of these solutions to work with multiple faults.

That is more a property of the problem solver part of the model than the model and

VII-45

13

simulator themselves. The trade-offs occur in amount of CPU available, efficiency

required and the ability to represent the artifact _ one model over that of another. The
=

example of deKleer is one of the most interesting implementations, but probably one of the

most difficult to apply to a domain. In almost any domain there will probably need to be

some combination of rule-based processing using at least a qualitative model to generate

expectations. Whether symptom sets are generated statically or dynamically may depend

upon the constraints of the environment.

Acknowledgements

This work was perfomed by Martin Marietta Astronautics Group under

contract number NAS8-36433 to NASA, MSFC, Huntsville, A1.

$. References

[1] Adams, Thomas L., "Model-Based Reasoning for Automated Fault Diagnosis and

Recovery Planning in Space Power Systems," IECEC 1986.

[2]Davis,Randall,"DiagnosticReasoning Based on Strucun'cand Behavior," Artificial

Intelligence24, 1984.

[3] G-enesereth, Michael R., "The Use of Design Descriptions in Automated Diagnosis,"

ArtificialIntcRigence24, 1984.

[4]Genesereth,Michael R., "DiagnosisusingHierarchicalDesign Models," Proceedings

of the National Conference on Artificial Intelligence, 1982.

[5] Gilmore, John F., and Gingher, Kurt, "A Survey of Diagnostic Expert Systems," SPIE

VoL 786 Applications of Artificial Intelligence V (1987).

[6] Hamscher, Walter, and Davis, Randall, "Issues in Model Based Troubleshooting,"

MIT Industrial Liaison Program Report 11-34-87, 1987.

[7] Hester, Tom, "F_S II: A Real Tmae Fault Isolation Expert System," IECEC 1986.

VII-46 14

[8] Iwasaki, Yumi, and Simon, Herbert A., "Causality in Device Behavior," Carnegie-

Mellon University, Department of Computer Science, Technical Report CMU-CS-85-118,

1985.

[9] deKleer, Johan, "An Assumption Based TMS," Artificial Intelligence 28(2) 1986.

[10] deKleer, Johan, and WilLiams, Brian C., '_Diagnosing Multiple Faults," Artificial

Intelligence 32(1) 1987.

[11] Lee, S.C., and Lollar, Louis F., "Development of a Component Centered Fault

Monitoring and Diagnosis Knowledge Based System for Space Power System," IECEC

1988.

[12] Miller, W., et al, "Space Station Automation of Common Module Power Management

and Distribution," Martin Marietta Aerospace Denver Astronautics Group, 1989.

[13] Pearce, D.A., "The Induction of Fault Diagnosis Systems from Qualitative Models,"

Proceedings of the American Association of Artificial Intelligence, 1988.

[14] Reiter, R., "A Theory of Diagnosis From First Principles," Artificial Intelligence

32(1) 1987.

[15] Talukdar, Sarosh, and Cardozo, Eleri, "Patchwork Synthesis and Distributed

Processing for Power System Diagnosis," IECEC, 1987.

VII-47 15

INTELLIGENT SPACE POWER AUTOMATION

A PAPER PRESENTED AT THE IEEE INTERNATIONAL SYMPOSIUM ON

INTELLIGENT CONTROL IN SEPTEMBER 1989.

VII- 48

i

INTELLIGENT SPACE POWER AUTOMATION

Joel Ricdcscl

ChrisMyers

Barry Ashworth
MartinMariettaAstronautics

Denver, Colorado 80201

ABSTRACT

Scheduling and monitoring satellite power systems has traditionally required _tensive ground
In general, ground t_pport consists of ram•gin& the distribution of power to required

loads, diagnoais of power system fai']m'e_ md control of fMh=e recoveTy. We at Mmin M_ieua.
under contract since 1985 m NASA. Mmhall Space Flight Center, have designed and implemented
• power system test bed for Space Station Freedom modules that utilizes intellige_t control in
automating power system management and distribution as well as providing power system fault
di_n_ mire_ay.

Keywerds: Power Automation,Fault Diagnosis, Sdmduling. Intelligent Con_ei

A[
ADC
ECLSS
FRAMES
OC

LLP
LPLMS
MSFC
NASA
PDCU
SIC
SSM/PMAD

ArtificialIntelligenoe
Amdo s m Digital Cud
Env_ Conuol and LifeSulpon System
Fault Recovery and Mtn_emmt Expe_ Sysmm
Gesmic Conuoll_
I.md Cram"
I.owest I_vd Promsmr
Lo..4 Primity List Managermmt Sysmm
(George C.) Mmh_l Spece Flight Ca_
Nmioml _ 8nd Spece Admlnismtd_
Power Disuibution Conuol Unit
Switch Intedace Conuolla"

Spece Station Module (Aumqnomous)Power
MmmgementEl Dism2mdon

2_.2umx_m

Vh , paperde b , pow symm umb s o,, Power t gem t
Distribution (SSM/PMAD). Ihat was designed far intelligeat control. This _ was de_.gr, cd from the

ground up, the hardware ('oo01compomr controlling hardware as well as switch_ and coutmller cards) and
software was deigned with the goal of an auumoum_ system in mind. The focus of Ibis Imper is on the
intelligent conerol of the power system. In that respect we do not discuss the design of the physical
hardware although that is very imlmftant to intelligent, autonomous controL The design far intelligent
coutml is discussed in the remainder of this paper while we acknowledge dm important role of the physical
hardware without going into any detail about it.

The test bed we have doreloped may be _bed in a number of levels. At the bottom level exists the

switchgear hardware while at the top level scheduling and fault ".dia_._sis resides, l=_gure 1 shove, the
topology of the power system and where the higher level functions fit m I. Inbetwem theseleveisextstsa
variety of software and hardware designed to further enable the intelligent automation IXOCeSS which
supparm the higher im3cesses. We will descn, be the _ hardware and mftware of the lxeadboexd in
the context of its global goal of intelligent power automation. Sections two, Ihree, and four will then talk

I On _ 14, 1988 • NASA Change Request spo_¢yi_ 120 Void dc som_
power was put into effect. Also, since then the bus topology has chauged to •
STAR.

VII-49

about how intelligence is distributed among the various software components of the system in detail. An
important aspect of the system approach to space systems power management described here is that I)
intelligent control is combined with 2) fault management and 3) activity & resource planning and
scheduling to form the nucleus of a power management and distribution system manager. Also,
deterministic processes which may, by definition, belong to knowledge based operations have been removed
and distributed to more fundamental lower level activities, wherever possible.

2.1. Problem Definition

The goals of reducing ground rapport costs and increasing feasibility of long term long distance
missions motivates the intelligent automation of space power managemenL The Space Station
modules require the management of power to 44 distribution points each with an average of a dozen loads -
larger than anything yet flown. =.....

The automation of power numagement end dism'bution involves three primary m_ Scheduling of
power to particular switches for operation of loads, control of the power distribution hardware during
schedule execution, and failure diagno_ and recovery during faultoccurrences.

2.1.1. Schedulin_ The scheduling problem can be an intensive task. Witness the example of
S_. Mission operafions had to be scheduled in real timebyalargegroundlmpport task foroe. The
result was 90 man-months of labor to schedule 9 months of tasks. 10 man-months per mission month. _
Intelligent automation of scheduling, especially in light of changing power availability and larger power
systems, becomes increasingly necessary (it is estimated 50.or mote ground personnell will be required for
Space Staten Freedom).

In general, the scheduling lxoblem is an NP-complete problem (the number of solutions may be
exponential) requiring the skilled use of _ to manage the problem. Scheduling asks to optimize a
set of tasks with respect to efficiency. If every possible solution were to be analyzed the problem might
never be solved.

In the domain of satellite power systems the scheduling problem requires a l_a_c amount of knowledge
abouttheloadsbeing scheduled. I.zeds have diverseandchangingenergyrequirements.Loadsmay alsobe
constrained to opexate in determined periods of time based on, for example, the visibility ofcertainstar
clusters, the sensitivity of the load itsetf (e.g. does it require a minimal amount of vilxation to operate
conectly), and even On the availability of crew memben to operate the loads in a required manner. Loads
may also have wioritie& life support systems being one ofthemostcriticaL

2.1.2.47.onm31 of the Power Dism'bufion Hardware Control of the power distribmion hardware is done
by the Lowest Level Processors (UJ_). Each LJ..P is responsible for commanding switches open and
closed in response to scheduled activities, for maintaining power to loads in as efficient a manner as
possible, and for buffering data between the switches and the higher level

The LL.Ps are con.qanfly aware of the amount of power being consumed by the switches and
automatically turn switches off if the amount of power being used is mete flumallowed (as indicated by the
schedule). TbeLLPsaceaisoawafeofthewioritiesbetween loadsatasinglelond_. If the uaonnt of
power available is suddenly reduced, the I2.P can continue Io power throe loads that have higher _
and drop theee Imds with lower _

The _ are also used to enable the Fault Recovery and Management Expert System (FRAMES) to
gather infmnatim from the power sym_ During fsult diagno_ FRAMES may rnd switch commands
to the LLPs which are immediately _ and the remlfing infoemation sent bsck. "rbeLLPs contain all
of the system low level activities which serve to inteMace the knowledge based inu'Aligentcontrol activities
to _e power _ ha_wate.

VII-50

p*IWt mBnUWl eenesu _oou u_ m. Jm_llJuL suo 4mpl,t _

Rp._I. po,,_ Sp,cm Topok_

2.1.3. Failure DiaLmosis and Recover_ In the event of a failure in the power system, automation of the

diagnosis of the failure is required if automation of scheduling is desired. The process of diagnosing a
failure in the power system and dynamic scheduling around the failed parts of the system defines a mode of
failure recovery.

The primary motivation of automated failure recovery is to continue operation with minimal
interruption of the loads. By scheduling around the affected parts of the power system it becomes possible
to manually repair the affectedregions of the power systemforsubsequentuse,without shuttingdown the
entire system.

"['heremay be many different faults occurring in a power system. These include a single fault detected
by a switch tripping, usually indicating an open circuit or a short circuit. If a switch is not operating
ccx'recdy a masi_ fault may occur where the switch does not trip but the one above it (closer to the source)
does. Fault diagnosis is aiso complicated by multiple independent faults occurring in the same time period.
The diagnosis of faults depends to some degree on both the placement and accuracy of sensors for fault
detection as well as the ability to manipulate switches in the power system in an attempt to isolate the
location of the fault and provide cont'uming evidence of a particularfault.

intelligent manipulation of switches in the power system domain as a fault isolation technique is
dependent on the hierarchical nature of the switches. This is possible due to the acyclic nature of power
systems (where power flows from the source to the loads, guided by switches).

2.2. Closed-Loop Control
The system architecture yields a nested elosed-loap control system approach. This is shown in Figure

2. The outer control loop, operating in seconds of time, employs activities which are managed by the
knowledge-basedcontrolfunctions,while the innercontrolloop, opermingin microseconds to milliseconds,
utilizes conventional limit checking techniques. The result is that situations which require immediate
response are managed within the inner loop where system safe-haven can immediatelybe reachedandd_
schedules are considered fixed. But, situations which can allow more processing consideration ate explored
and managed at the outer control loop, providing control inward to d_ Lowest Level _ (LLPS).
Future parameters, such as updated schedules and updated priority lists, are produced outside of the control
activity perfommnce constraintstolxevcnt _ conflicts.

2.3. The Power System
Our ctm'ent implementation contains eight Lowest Level Processor (LIP) units. Every LIP contains a

computex controlling two Switchgear Interface Cards (SIC.s). Each SIC card is capable of interfacing the
computer to an Analog to Digital Card (ADC) and up to fourteen Generic Controller (GC) cards, which
control the switches. Each LLP may control as many as 28 switches.

From the perspective ofpowersysteanautomation there are two featuresofthephysical power system
to be noticed. The first feature is the architecture; the power system is laidout as a distributed system.
Each LIP is controlling a set of switches. If one LIP fails the other LLPS are not affected (in general). In
the cmTe_t implementation there are two LIPs that control distribution of power to the other six LLPs.
This gives us a hierarchy of switches. The second feature is communication; the LLPS are used for

VII-51
ORIGiI'_AL PAGE iS

OF POOR QUALITY

communicating both scheduled switch commands (open and close) to the switches as well as switch and
sensor information from hardw_c back to FRAMF..S.

The LLPs exist within two environments; the Power Distribution Control Unit (PDCU) and the Load

Ccnter (LC) (as shown in Figure I). For both environments they carry out numerous activities. However,
functionality is not complctcly uniform between the two distribution controllers. For both, the scheduled
operations of switching activities arc carried ouL They both acquire and process switch and sensor data in
the form of current and voltage, and pass that data up to FRAMES. They also perform range testing and
fault testing on the data, providing notification to FRAMES in the event anything out of limits or faulted
is found. Both cnvironmcnts also calculate and pass system performance statistics to the higher level

processes. The main difference between them lies in how limit exception conditions are handled. In the
LC, if a load draws too much current the load is shed. In a PDCU this is not done, instead the PDCU
notices the out of limit condition and informs the fault recovery and diagnosis system of tic exception.

This may then lead to recognition of a soft fault or a problem with one of the loads below the PDCU.

2.4. Schedulin[

Scheduling the activities needing power is the first step in the operation of power management and
distribution. Scheduling is initiated by tic user and subsequently performed whenever there is an unforeseen
change in the power system. The goal of the schedufing process is to make use of the available power in
the-most efficient manner possible, taking into consideration load-dynamics and resource availability,

among other things.
When a fault occurs during operation, FRAMES diagnoses it and lets the scheduler know which

switches can no longer be scheduled. Rescheduling resumes as many activities as possible and isolates the
faulted areas until they may be repaire_L Rescheduling will also take place if the user specifies that there
will be a change in the available power to the system for some fuutre period of time.

2.5. Fault Recovery and Management

The purpose of the Fault Recovery and Management Expert System (FRAMES) is to keep the power
system operating as completely and effectively as possible, especially in failure situations. This is done by

using a model of the power system network, keeping track of both what is scheduled to happen and what is
actually happening in the power system to recognize any discrepancies in its operation. When a discrepancy
is detected FRAMES analyzes the situation to detexmine what fault will account for the discrepancy.

Rip_ 2 _ _ Symm C,ma_/_nclkm

_- VII-S2

The LLPs communicate various data about their switches and sensors to FRAMES. This includes

currcnt data, switch status information, performance data, and trip rclatcd information. When FRAMES
di_ovcrs that there arc symptoms indicating a failure in the power system, analysis determines what class
of faults may account for the symptoms, and further testing may isolate the fault to a particular location in
the power network. Once the fault location has been isolated as much as is possible (given available
information from _nsors and switches), FRAMES determines and communicams to the schedulcr those
switches that arc no longer useable. TIc scheduler uses this information to schedule loads on the remaining
usable switches.

FRAMES is designed to diagnose faults occurring both independently and at different times from one
another. This is in contrast to some forms of multiple fault diagnosis. The types of faults FRAMES is
designed to diagnose include hard faults, soft faults, incipient faults, cascaded faults, and masked faults.
Hard faults arc defined as faults that cause switches to physically trip. Soft faults are illegal uses of current
in the power system, such as resistive shorts to ground, incipient faults are situations that will become
hard faults in a reasonably short time if nothing is done to avert them. Cascaded faults arc faults that result
in a larger number of symptoms than the actual fault requires, for example, if a switch in the middle of a
hierarchy of switches trips, all the switches that were operating below it may also trip on under voltage.
Masked faults are faults that can only be detected in the presence of other faults, they may be the result of

failed or inaccurate sensors for example.
- ..,

2.6. [;ystem Architecture

Figure 3 depicts the logical information flow in the system to support intelligent automation. Various
aspects of this picture wig be described in the following three sections explaining the data needed to support
intelligent automation.

3. Intelligent Control by Scheduling and Dynamic Contingency Management

The scheduling of resources and activities is an important autonomous level of intelligent control for
space power systems. This knowledge based activity includes substantial knowledge of the power system
itself as well as knowledge of the activities requested by the user. Actual loads are only roughly
characterized. The scheduling problem consists of creating a schedule for the requested activities making the
most efficient use of resources as possible. The problem is further complicated by a changing environment
causing possible problems or power losses in the power system. Scheduling must also by dynamic in order
to maintain efficiency and autonomy.

The basic power system resource is power and the ability to enable power properly. Other resources
may include crew, tools, and switches.

USER I 3PLANNING

USER INPUT_PRIORIW ,

I_KX.ATED¢ I LOAD EN/IJBI.E
f.AVLrtm_ V T SeUEt_tE

I FAULT _ LOWER-LEVEL
I MANAGEMENT]INrrIAL [CONTROL

I AND RFC(3VERY FAULT I t . ._

INFORMATION J
_N:_E DATA %0

ooo

Figure 3 - L_ lnfomutdon Flow

VII-53

The power system topology and switch characteristics actually complicate the availability of power.
Power is constrainedto certain levcis at the variousloadconnectionpoints basedon switchcharacteristics
and conncctk_$. = _ _................

The rest of this section will discuss first activities and constraints, important concepts to the
scheduling problem, foUow_, by schedule generation and dynamic _.J_uling.

Activities are represented hierarchically. An activity group is a set of activities reprcse.ndng different
ways to accomplish a particular goal An activity in turn, is a linear sequence of subtasks which, when
performedintheorderspecified,satisfythegoaL A subtask is a portion of an activity whose resomr.es and
condition requirements do not vary over its duration. Duration can vary as can delays between subtasks.
Finally, activities are also annotated with a priority rating, a subjective scale of the importance of the
activity. For example, on Space Station Freedom, ECLSS ('Environment Control Life SuIvoft System)
will probably have a very high rating while astronauts are present.

3.2. Constraints

Constraints represent conditions on or between activities. They _ for a variety of reasons.
Resource types and availability give rise to raw-controlledandconsumable resources. _ req_ts
that need to be met for proper operation of a task define conditions on activities. Opportunity window
consUaints, representationally equivalent to conditions, are constraints not associated with a resource but
necessary for the perfomance of an activity. These constraints, raw-controlled and consumable resoerc_
conditions, and opportunity windows we all perfonnaw.e-controlting mnsuaints.

Rate-conlrolled resources are those whose availability continues when the subtask using them ends.
Examples of this are crews time, themud rejection, electrical power and equipment. Consumable resources,
on the other hand, once depleted, stay depleted tmtfi some activity specifically reple_ishcs them. Water,
liquid nitrogen and lubricating fluids Ire examples of this type of con._-aining resource.

Conditions are states the spacecraft must maintain in onkr m perform a subuuk, and include s'pacecnth
attitude and position, temperature range_ acceleration, vibration, etc. In general, conditions cannot be
consumed by an activity requiring them. which differeatiates them from rate-conlxoHed resources. An
oppcctunity window is a peff_ntrolling constraint not Lcsociated with the availability of any
resomr.e, but constraining the performance of a subtask justlikea consmdnt would. Activities with
oppotuu_tywindow constraintsmust have appropriate submsks scheduled to happen within them.

Many of the peff_tmlling constraints can be satisfied by mote than one resource or
condition. An example of this is the case where a submsk could be performed by either of two crew
members trained to use a particular piece of equipment, but not by a_y of the other crew members. This is
referred to as a resource disjunction, a case where one resource or another can satisfy a requiremem. The
existence of a _..uxuce disjunction in a subtask description greatly increases the _ of finding times
during which a subtask can rtm, as CglXmmnifiesto perform the sulxask dcpend on which res(mece is chosen
- leading to _tially large sea_ spaces. This can be furthercomplica_! by tbe fact that a remerce
choice in one subtask can conu'ol that h, another, e.g. the _ member who peffoc_s the cah_ of an
insu_nent shonld be the same me who mtd the manual st the stm of the activity.

Another basic type of constraint on activiti_ is the relational constraint. Constraints of this type
•relate the start or end of one t_btask to that of another, either in the same activity or in anocher. A
relational constraint may also constrain activities by relating the start or end of a subtask to some event or
absolute time on the timeline.

3.3. ScheduleGeneradm

A _ is created by repcale_ executing three steps, refern_ to as the select-place-uixl_ cycle.
The first step involves evaluating every activity requested for scheduling with respect to a sex of selection
criteria, and choosing one activity to put on the schedule next. These criteria include the base priority
associated with each activity, the pegentage of peff_ requ_ that have been gbeduled for each
(ar.ceu kvel), ud the relative conmaint of ench (oppommity). Reistive constraint is a rough meam_ of
how many different opportunities each activity has to be placed oa _ schedule. These criteria are
combined u_g user-selectable weights which reflect the im_ ofeachcriteriontotheuser. An
activitychosenwillhavehigherpriod_,alowerpercentageofreques_ perr_ scheduled,and/or
fewerOpl_rU_es tobescheduledthanotheractivides.

Once an activi_hasbeenchosentobe scheduled,one instanceof_ ispl_ed on theschedule,The
calculation resulting in the _ of conslmint actually determines all allowable startand end times of all

V

VII-54

subtasks in each activity. This information can be usedduring placement to position the performance
according to soft conslraints (preferences) imposed by a user. The user, for example, may maximize the
data collection subtask, or can schedule Ihe activity as early or as late in the scheduling period as possible.
If there is a resource disjunction in a mbtasks's requirements, a preference can be specified and adhered to,
and in fact, a set of possibly contradictory soft conswaints can be specified along with an ordering of their
importance.

The t-realstep in the scheduling cycle involves updating re_urce availability prof'des to reflect the
activity's consumption of resoutce_ The cycle then repeats for as long as the user wishes or until there are
no opportunities to schedule any activity. The combination of weights on selection erilz_rlaand attention to
soft constraints during placement allows the scheduler to be tuned for a variety of scenarios.

3.4. Dynamic Reschedulin_
There are a number of situations in which a schedule must be altered in other ways to accommodate

various changes. It may become known that resource or condition availabilities will change or have
changed, or dmt an activity not previously known about needs to be added to the schedule. These situations
are handled within the scheduler by a heuristicaily-guided unscl_ufing mechanism in concert with a method
of alte_ring descriptions of activities already in progress, and aided by the maintenance during scheduling of
multiple partial schedules. A change in resource availabilities may result in a projected over-use of a
gesomr.e. When a resource is found to be ovetbooked, all activities using that resource during the time it is
ovedx_ked are evaluated. The evaluations are done according to a set of criteria designed to determine what
activity to alter or unschedulc to solve the problem. This should be done with the least import on the
schedule. The criteria include how well the activity's use of the resource fits the mount of ovetbooking,
whether the activity is in progress or not, the activity's priority, amount of crew involvement, use of other
resources, further opportunities to be scheduled, success level, and others. These criteria are also weighted
to allow flexibility to a user. An activity is selected and unscheduled of selected and altered, then all are
again evaluated and another unscheduled or altered, until no resource ove_ood_g remains.

Activities whose condition constraints are violated must be altered or unscheduled: there is no choice as
to which to affecL These are all handled the same as those chosen to be perturbed by a resource
overbooking. When it is dewamined that an activity not scheduled must be added to the timeline, the
scheduler fast tries to fred a way to schedule it which will not disturb anything already scheduled. If no
opportunity exists, the scheduler will try to fmd opportunities which will result in only lower-priority
activities being perturbed, and if found, will unschedule or alter one or more of those using the same
techniques as ov_gs. If no lower-priority activities can be found to bump, the scheduler rejects the
request (W.dmps the activity is not scbedulablc even in the absence of o4her activities, or all interfering
activities are of higherpriority).

The last thing the scheduler Iries to do after altering the schedule in a contingency is to schedule any
activities whose requests have not been fully met, po_bly using resources released when some other

activity was altemi or unscheduled.

In tho operatiou of the scheduler with respect to the rest of lhe antomafion system, tbe schoduler taxis
the current (or contingency) schedule to both the fault diagnosis system and the lower level intelligent
processes. In addition to the schedule, a priority list is computed by a Load Priority List Management
System (LPLMS) and sent down on a regular basis for the lower level processes to use in the event of load
shedding situations.

4, Intellic,ent Control bv Fault Management and Dlafnesis
The fault management and diagn(mic system provides suppcm for the autonomous power system by

inteUigenfly monitoring faults and intelligently controlling the power system for fault isolation.
Autonomous operation of the power system would not be possible without a fault recognition and isolation
knowledge based activity to support dynamic rescbeduling and overall control of the power system.

The general fault diagnosis problem comL_ of three parts: Fault detection, fault imlatiot_ and fault
recover. Fmdt detection is taken care of by the lower level _ in generaL For some faults (e.g.
some soft faults, and incipient faults) fault delection must occur at a level above the lower leveJ pmcesseL
Fault recovery is enhanced by the scheduling system, with FRAMES which also carries a global picture of
_ _.$k to bc accomplish¢_L

VI'I-55.

There are a number of issues involved in fault diagnosis in general (see [9] for a general overview).
These include: The computation of symptom sets, model based reasoning, single vs. multiple faults, and
how fault isolation is done. Each of these issues will be discussed hew,. -

4.1. Symptom Sets

A symptom set is a set of symptoms that indicates a fault. To put it another way, a fault gives rise to
a set of symptoms. In fault diagnosis, the symptom sets may be computed in a number of ways. One may
have a model of the power system dynamically compute the possible symIxom sets for any possible fault
in the power system. Alternatively, one may analyze all the possible faults in the power system beforehand
and save the dynamic computation by using memory space instead. The benefit of dynamic computation is
to be able to compute symptom sets for unforeseen power system topologies. In the static computation
mode, if the power system topology changes significandy, potentially large amounts of work may need to
redone.

Symptom setsare used for pattern matching in an attempt to determine what fault may have occurred in
the power system. A symptom or set of symptoms resulting from an actual fauk may indicate more than
one possible fault. It is then important to isolate the fault from among the various pussibilides.

In _, all the reasonable fault scenarios are analyzed beforehand and their symptom sets
computed. These are then used within _,.AMES to pattern match against to determine possible fault
situations.

4.2. Model Based Reasonin_

Similar trade-offs apply here as in the computation of symptom sets. In general, the motivation for
using model based reasoning is when all the fault scenarios are not necessarily knowable beforehand. "l'uls
usually happens when requirements are changing or when the domain of reasoning is a dynamic domain.

Model based reasoning may also be used when reasoning from first principles is required [8].
For FRAMES, a model is used to help in the gathering of symptoms from the LLPs. As all possible

fault situations were analyzed beforehand, it was not needed for symptom set computation. When
symptoms are detected at the lower level processors, they will be sent to FRAMES As the lower level
processors implement a distributed system, FRAMES needs to be able to compute, based on given
symptoms so far, what other symptoms other lower level wocesses may yet provide. Thus, the model is
used for generating symptom set expectations or

4.3. Single vs. Multiple _=aults

The issue of single vs. muldple faults is whether P'gAMES will diagnose those faults that occur
tingly, spaced out flora one another, or if I=RAMES will diagnose independem or dependent faults occurring
at or near the same time. Diagnosing multiple faults is not a simple issue. The dependent nature among
faults greatly increases the complexity of the situation. Furthermore, multiple simultaneous faults were
not considered very credible acenados for the domain under consideration. For FRAMF_, single fault
d_,nods is utilized. FRAMES alsodiagnosescenainc_ofmuldple faults-themsked faulu. Rx
example, ff a t'witch'scurrent sensor is broken and a shortappearsbelow theswitch,theswitchabove will

triponovercunmt. FRAMES willdiagnosethesekindsoffaults.
There b another type of fault dtuadon, _ faults, that appl_ to lxxh multiple fsults'and single

faults. A cascaded fault sltuation is where a short circuit may arise beJow a 3k switch cansing it to trip on
fast trip. Consequenfly,,n the gwiehes below it that wege closod will also tdp on under_i_¢ Thisisa

cascade effecL To beaccuntte, what is really being reported toFIRAMES Is a set ofcascaded symptoms
arisingfrom a singlefaultinthisexample. Most faultswillhave cascaded symptoms givingsome further
_ of _e _mdC Thus, wlP.,n_ _ f_u_, it _so iwJ_ tlH:_ faulm wi_ c_l_l
symptoms. This phenome.non forces FRAMES to explore muldpk_ fault scenarios for single fault
ocoJrelee&

,4.4- Fault Isolation

The issue of fnult isolation is how to isolate wbere a fault occuned. Symptoms may degn_ a larga
class of pogdble faults that could acceunt for them. ObviouS, erie does mt want to _ all the
possible faults. P.ather, one wouldh'ketodia:dminate further between the possible faults. There are two
basic mechanimns to do this. One is to dynamically wobe for values at various points in the power
network. Obviously. in a fully antomated system this is not easy to accemplish. The second bas_ method
is to manipulate the switches.

VII-56

Switch manipulation is performed in FRAMES and provides for control of the state of faulted areas of
the network, allowing testing by opening and closing switches to produce useful results. As switches are
openedand closed,dataarecollectedfromtheresultsoftheseoperationstofurtherdiscriminatebetween
possiblefaults,Switchmanipulationprovestobe a veryusefuldiagnostictoolinpower networksdue to
thehierarchicaltopologyoftheswitches,asinSpaceStationFreedomforexample.

During normal autonomous operations, FRAMES performs a monitoring function. When a fault
occurs, the lower level processes send symptom set data to FRAMES. FRAMES does pattern matching
over the received symptom set and determines if further testing must occur to isolate the fault. If so,
switches are manipulated to generate further discriminating symptoms. Once the fault is isolated, the
switches that can no longer be operated due to the fault are communicated as being out of service for the rest
of the scheduling period to the scheduler. FRAMES thenresumesnormal monitoring operations.

5. Intelligent Control bv Smart Low Level Functions

Physical control of switches is achieved by intelligently commanding switches open and closed, by
considering the power scheduled to be used through the switches, and by managing priorities of loads using
switches at the LLPs. Charac_ of this intelligent control include: Distributed control, load shedding,
redundancy management, scheduledoperations,and algorithmic controlof loads and switches. Ths is
actually a deterministic extension of FRAMES.

The low level funcdous provide intelligent control of the switches by considering power scheduled and
priority of loading. The architecture of the system dictates that the low level functions be resident at every
LLP yielding distributed control of the switchgear. The loading and power usage is controlled
algorithmically through command of the switchgear. The low level functions are also responsible for
preliminary fault detection. Knowledge suppfied by the scheduler and the priority manager is used in
conjunction with the data received from the switchgear to intelligently conlrol switching operations and the
distribution of power.

One of the feantres of the low level functions is distn'buted processing and control. Because each
controls a limited number of switches, and there are many _ throughout the system, control of
switches is distributed at the LLP level. Since the low level functions operate concurrently on each LIP,
the overall system has a faster _ to fault si_tions. Also, the loss of a single LLP will not be
catastrophic to the power system. Performance informationismaintainedateach LLP where p¢cr.,essing
power is leastexpensivewithrespect to system performance,

Although distributed processing is advantageous for processing and survivability, it also has some
potential disadvantages. Disuibuted control of the system has consequences in global operations. The
most important consequence of distributed control becomes apparent in global load shedding. When the
system is required to immediately reduce the amount ofpower consumptiondue to change in source
availability, the _ are required to bring their power consumption into line with availability. The
consequence is that a load of higher pdority on one LLP may be shed, while a load of lower priority
controlled by a different LLP remains powered. In operatingindependently of each other,theLIPs do not
exchange information. Furthermore., an LLP has no idea what is loaded on any other LLP. Therefore,
global load shedding cannot be easily accomplished at a local level, forcing resolution of the problem
upward. Other global operations, such as planning, have similar pmbim which tend to force solutionsup
into central entities. The overall problem is solved by pmdueing items with global implications at the
system management level, and then performing component level management on those items at the LLPs.

Algorithmic control of the switchgear at the LLP is the pt_u_ activity of the low level functions.
Control and monitoring of the switchgear can be broken down into several operations. Fust, accepting
schedules and commanding the opening and dosing of switches. Second, shedding switches by load
priority, w_ necessary. Last, managing redundantly murced loads. Walt these operations, algorithmic
control begins to take form.

The acceptance and implementation of scheduled owa'atio_ is fundamental to distributed management
attheLIJ_. A scheduie is passed to au LLP and stored. When the effective time of the scbedule is
reached, the schedule is placed in operation. The events within the schedule are IZOcess_ as individual
events whea their effective times are reached. There are only three types of events, turning on a switch,
turning off a switch, and changing a switch's allowed power mnmmptim or redundancy state. Each event
contains limits on power consumption, redundancy and permission to switch to redundant, the switch
identifier, and the time ofan event. The algorithmic control only stores two schedules, the one _fly
in operation and the next schedule. Ifa contingency schedule is received, it is treated as the next schedule.

VII=57

During periods of intelligent control, scheduling is the only way a switch may be turned on or off. All
other switching activities must occur from a manual level of intervention where no automation functions

Two other methods of turning off switches exist under algorithmic conlzoL Both of these methods arc

categorized as load shedding, Thc rust casc is when a switch is scheduled on and a load of lower priority
must be shed in order to supply sufficient power m enable the scheduled load. The process for shedding
loads is priority based. The loads to be shed are marked in order of increasing priority until the amount of
powerrequiredis rcached.The sheddingalgorithm then proceedsthroughthemarkedloadsin order of
decreasing priority to see if any need not be shed while still meeting the power requirement for shedding.
This process removes only those loads which must be removed. The other way a switch may be shed is if a
redundant switching operation is scheduled.

Redundancy management is another feature of algorithmic controL When a load is scheduled at a load
center, it can be both redundant and have permission to switch to redundant. If such a load trips, the switch

powering the load from the redundant bus is scheduled immediately. Scheduling this load on the redundant
bus conld causc load shedding on that bus in ord_ to accommodate the new load. This is a function of load
priorities and available power and is the method that the L/.P uses to deal with redundantly sourced loads.

The last function of the LLP to be discussed is fault isoladon. When the LLP detects a hard fault at a
switch or set of switches, it sends the fault type and switch information to FRAMES. I_AMF, S may

request the LLP(s) tomanipulate their switchesso that it may accumulate knowledge about the fault. The
basis of manipulating switches in a specific order is to get information about the fault from a known state
of the system. Only by opening, flipping, and closing the switches at the L[_ level can FRAMES
reasonably attain mote knowledge about the fault and its causes. Upon completion of its fault isolation,
FRAMES informs the user and udccs corrective action. This coaecfive action may be to take a particular
switch out of service, and this will be reflected in the contingency schedule issued during fault recovery.
Fault isolation is a very powerful tool for FRAMES and its data gathering is a low level function.

VII-58

6. Acknowledgements

This work was performed while under contract to NASA. Marshall Space Flight Center. contract
number:. NAS8-36433.

7. Refc_rc_:cs

[I] Ashworth,Barry R.,"An ArchitectureFor Automated FaultDiagnosis,"Proceedingsof the
IntersocietyEnergyConversionEngineeringConference,1989.

[2] Britt.DanielI...,JohnR.Gohring,and Amy L.Geoffroy,"TheImpacton theUtilityPower System
Concepton SpacecraftActivityScheduling."IntersocietyEnergConversionEngineeringConference,
1988.

[3] Freeman, Kenneth A., Rick Walsh, and David J. Weeks, "Concurrent Development of Fault
Management Hardware and Software in the SSM/PMAD." Intersociety Energy Conversion
Engineering Confc_ace, 1988.

[4] Geoffroy, Amy L., Daniel L. Britt. Ellen A. Bailey. and John Gohring, "Power and Resource
Management Scheduling for Scientific Space Platform Appfications." Intersociety Energy Conversion
Engineering Conference, 1987.

[5"] Lee, S.C., and Louis F. Lollar. "Development of a Component Centered Fault Monitoring and
Diagnosis Knowledge Based System for Space Power System." Intersociety Energy Conversion
Engineering Conference, 1988.

[6] Miller, W., E. Jones, B. Ashworth, J. Riedesel, C. Myers. K. Freeman. D. Steele. IL Palmer, R.
Walsh, J. Gohring, D. Pottruff, J. Tietz, D. Britt. "Space Statim Automation of Common Module
Power Management and Distribution." Interim Final Report no. MCR-89-516, Martin Marietta,
1989.

[7] Miller, William D., and Ellen F. Jones, "Automated Power Management within a Space Station
Module," Intersociety Energy Conversion Engineering Conference. 1988.

[8] Reiter, R., "A Theory of Diagnosis from First Principles," Artificial Intelligence 32(1):57-96, 1987.
[9] Rkdesel, Joel D.. "A Survey of Fault Diagnosis Technology," Proceedings of the Intersociety Energy

Conversion Engineering Confe_.n_ 1989.
[10] Weeks, D., "Autonomously Managed High Power Systems," Intersociety Energy Conversion

Engineering Conference, 1988.
[11] Weeks, D., "Artificial Intelligence Approaches in Space Power Systems Automation at Marshall

Space Flight Center," in the Proceedings of The First International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expe_ Systems, Tullahoma, TN. 1988.

[12] Weeks, D., "Automation of the Space Station Core Module Power Management and Dism'bution
System," in the Proceedings of SOAR '88. Dayton, OH. 1988.

v

VII-59

AN OBJECT ORIENTED MODEL
FOR EXPERT SYSTEM SHELL DESIGN

A PAPER PRESENTED AT THE IEEE INTERNATIONAL CONFERENCE ON

COMP[YrERS AND COMMUNICATIONS IN MARCH 1990.

VII- 60

An Object Oriented Model for

Expert System Shell Design

3oel D. Riedesel

Martin Marietta Astronautics Group

P.O. Box 179, MS: S-0550

Denver, Co. 80201

Abstract

In this paper a tuple space based object oriented model for knowledge representation and interpretation
is presented. This model is currently being applied to the expert system arena of knowledge base systems.
The architecture addresses two important issues of knowledge base system design. One, the trade-off between
expressivlty and tractability in knowledge representation and two, knowledge base system and expert system
shell domain independence.

Current expert system shells stress how many rules can be fired per second. The most common of these is
OPS5 using the RETE pattern matching algorithm. The speed of expert systems is very important, but at the
same time it is important to be able to represent domain knowledge adequately. This is where the expressivity of
a knowledge representation language becomes important. For complete expressivity one might turn to tirst order
logic at the expense of potential intractability. An architecture is defined here that fails somewhere between
OPS5 and FOL in expressivity and tractability. It trades some expressivity for tractability and vice versa.

Most expert system shells today also tend to be somewhat domain restrictive (such as diagnostic and clas-

sification domains). Both the knowledge representation language and the inference strategy used contribute to

this restrictiveness. Analysis of requirements for greater expressivity of both knowledge and inference strategy

for representing domain independence as well as for keeping intractability manageable has resulted in an object
oriented language for defining knowledge base management systems as wall as their instantiation. This language

and its implementation will be discussed in some detail.

VII-61

I INTRODUCTION 2

1 Introduction

Early Artificial Intelligence (AI) programs centered around general reasoning mechanisms. This included
sound and complete search methods as well as powerful knowledge representation languages (for exam-
ple, General Problem Solver [15] and resolution theorem proving [18]). These early efforts worked well
on small problems but failed to scale to large problem spaces adequately. In fact, NP-complete problems
seemed to abound everywhere. As a result of the problem of intractability researchers moved toward
domain dependent reasoning. Here, the knowledge could be restricted to domain dependent heuris-
tics instead of general search, as well as restricted knowledge representation languages. These domain
dependent expert systems became quite successful (see [2] and [19] for an overview).

Although these domain dependent expert systems worked quite well, expert system technology and
knowledge representation of various expert system shells did not transfer well from one domain to the
next. Witness the diversity of expert system shells currently existing in the commercial marketplace.
The number of shells residing in the university research labs are probably an order of magnitude larger.
This diversity is a result of two main restrictions (for combating the tractability problem). One, the
restriction on knowledge that can be described or stated, the declarative knowledge. Two, the restriction
on mechanisms of inference over the knowledge. Because of these restrictions, it became very important
to analyze a domain very carefully to be certain that it could be represented in an existing shell.

The moral is that although generality is needed for a tool to be applicable to a large number of
domains providing transfer of both knowledge representation and inferencing techniques, to beat the
tractability problem domain dependent tools must be developed and applied. The thesis of this paper is
that we can beat this moral. A knowledge representation language that has sufficient heuristic adequacy
[21] can be both general and tractable. But the tractability provided is only because knowledge of the
domain is described and developed using software engineering techniques. If general search strategies
are continually relied on, instead of developing efficient heuristics applicable to the domain, tractability
will still be an important issue.

1.1 An Overview of the Language

A general knowledge representation language and basic inference mechanism is described here/ This
language is used for defining expert system shells and instantiating them to a specific domain. The
language is defined and implemented using the Common Lisp Object System (CLOS) up to the level of
rules. Rules, rule groups, and knowledge bases are also objects but of a different type. The language
objects from rules2 on up are defined in a user accessible object language using a frame system. The
object oriented view provided at the higher levels allows the user to modify and extend the language
very easily to make it applicable to a previously difficult domain.

The language (let's call it a Rule Management System (RMS) language) is supported by a tuple
space [4] implementation of a database as well as a frame system built upon the database. The language
provides tractability in two primary ways. One, tractability is supported by organizing knowledge in
logical modules (taking advantage of divide and conquer methodology) and by providing heuristic control
over knowledge. This is the software engineering approach to tractability. Two, tractability is further
enhanced by providing a level of efficiency in the matching mechanisms for determining what knowledge
is true in the world.

The RMS language may be instantiated in many different forms including more classical expert
system shells. Figure 1 shows a general Rule Management System architecture. This architecture
consists of three main parts, the database, database interface, and the rule management system. The
database is independent of the rest of the RMS. It may be distributed or not. The database interface

1 This language is part of a much larg¢_ system, KNOMAD -- Knowledge _l_agement]Deslgn System, being devdoped

by our group at Martin Marietta Astronautics. The Rule Management System module d it is the focus of this paper.

2 Rules are represented as both a CLOS object and a user specifiable object. One could make all the objects of the

language uscT accessible, but efficiency would be hampered.

VII-62

2 EXPRESSIV'fTY AND TRACTABILITY 3

maintains links between the database and the rules as well as providing abstraction over data in the

form of frames. Finally, the RMS consists of a number of rule groups and mechanisms for performing

inference over rules. The RMS and database interface are collocated in one location. Of course, many

of these RMS and database interface modules may exists in different locations providing support for

distributed knowledge agents as well.

2 Expressivity and Tractability

Expressivity has at least two meanings that may be distinguished. One meaning of expressiveness asks

whether a language allows something to be said. In this meaning various languages can be compared in

terms of formal language theory and classified as Type 0, 1, 2, or 3 [12]. We find that most computer

languages are Turing equivalent and therefore it becomes moot to compare languages on the simple basis

of whether or not something can be said in them. The other meaning of expressiveness asks how easy
can it be said, how clear or understandable is it using the language? This meaning has a tendency to be

more subjective but may also be seen as a variation of the first. For example, anything can be expressed

using propositional logic, the problem being that an exponential number of statements may be needed

to say it. First order predicate calculus can immediately get rid of the exponential number of statements

(perhaps at the loss of clarity). It is the second meaning of expressivity, that is, how naturally can

something be stated, that is important in this paper.
A problem with greater expressivity is the increased potential for intractability. This was seen by

the problem of trying to define languages that would apply to many domains. The language defined

here attempts to move from the more expressive world of first order logic and a basic knowledge base

management system model toward an OPS5 world of more efficiency without losing any expressivity

(perhaps even gaining some). Figure 2 depicts this goal graphically.

2.1 The Knowledge Principle

To beat the problem of intractability, domain heuristics are used. Raj Reddy's fifth principle states:

Knowledge eliminates the need for search [16] (see also [10]). The success of the domain dependent

expert systems was almost exclusively a result of this. This implies that a language that can adequately

represent heuristic knowledge (both declarative and procedural) provides the power to eliminate much

of the search, making problems tractable once again.

On the other hand, Raj's fourth principle states: Search compensates for the lack of knowledge. This
implies that in the cases where knowledge is not present, general search strategies may be used to fall

back on. Thus, the specification of domain knowledge and control knowledge of the domain tremendously

enhances the tractability of the knowledge representation and interpretation problem (see [3] as a classic

example of using heuristics to beat the tractability problem).

2.2 Options for Managing Tractability

As a language becomes more expressive, the problem of tractability becomes more important. There are
two aspects to managing this problem. The first aspect is to manage tractability by providing heuristic

adequacy in the language [21]. This method manages tractability by using heuristics in place of search;

providing direct paths to a solution. The second method is by providing efficiency in the language itself,

for example, the RETE network in OPSS.

Tractability must also be managed when search is used to compensate for the lack of heuristics. There

are at least three options available for managing the expressivity versus tractability problem when using

general search methods [11]. First Order Logic (FOL) will be used to represent complete expressivity.

Most will agree that practically anything can be represented in FOL. Furthermore, resolution theorem

provers have been built which are sound mad complete and will derive a proof in FOL if the proof exists

in the theory. The only problem is that the theorem prover may take an exponentially long period of

VII-63

2 EXPRESSMTY AND TRACTABILITY
4

_oowledg_IKnowled_ol
ge_l / | Agent 2]

DatabaseInterface

I
Rule Management System

V

Figure I: Rule Management System Architecture

VII-64

3 LANGUAGE DESIGN AND IMPLEMENTATION FOR DOMAIN INDEPENDENCE 5

-- More Expressivity

-- Less Efficiency

-- More Expressivity

-- More Efficiency

b Less Expressivity

More Efficiency

Basic Model Rule Management System OPSS(RETE)

Figure 2: Expressivity versus Efficiency

time deriving the proof. It may not even return at all if the MINUS lisp :: first (rule-result)] L proof

does not exist. The alternatives are to: One, restrict what the language can express (e.g. allow only

conjunction) or two, restrict the definition of implication (or derivability). One way of doing this is

to define an implication operator that is sound but incomplete. Finally, a third alternative is to use

defaults and assumptions. Defaults and assumptions are probably the least understood option. In fact,

it is even possible that the use of defaults and assumptions (introducing non-monotonicity) may be more

intractable than monotonic reasoning.

Common mechanisms for restricting the expressivity of the representation language are by the use
of databases, logic programs, versions of FOL, expert system languages, etc. The power of machine

learning programs are also usually a function of what they can represent. The representation language

in combination with the domain knowledge defines the size of the search space [8]. Limits on knowl-

edge expression determine bounds on the size of the search space. Thus, this restriction on knowledge

representation is a mechanism for reducing the size of the search space.

The most common way of restricting implication is to define methods of inference that are sound but

not complete. One of the easiest ways to do this is to not allow backtracking. For example, in the area

of expert systems, there may be more than one rule in the conflict set. During forward chaining only

one rule may be allowed to fire from the conflict set. Once this rule is fired no backtracking is allowed

to try the other rules. Therefore, this strategy can be seen to be sound but not complete. All possible
solutions may not be found.

Finally, defaults and assumptions may be used to infer knowledge without having to explicitly derive

it using an inference strategy. Knowledge is av_lable due to inheritance and other mechanisms. This
approach helps tractability by eliminating the need to infer defaulted and assumed knowledge. On the

other hand, managing defaults and assumptions (as well as inheritance with exceptions) may cause some

intractability problems of its own.

3 Language Design and Implementation for Domain Indepen-
dence

The following sections describe in some detail the design and implementation of the rule management

system language and support.

3.1 The Database

The first level of support is the database. The database is viewed as a plug compatible module. This
provides the ability to take advantage of existing databases and database management mechanisms such

as ORACLE or INGftES, for example.

The rule management system takes a tuple space view of the world and requires that the database

represent them. A tuph is an ordered sequence of (possibly) typed fields. Conceptually, a tuple may be

VII-65

3 LANGUAGE DESIGN AND IMPLEMENTATION FOR DOMAIN INDEPENDENCE 6

thought of as an object that exists independent of the process that created it. This implies that a place
to store it is needed if it is to live a life independent of processes used to create and destroy it. The tuple

space is sufficient for representing FOL and also sufficient for representing at least relational databases

[17].

The tuple space has also been proposed as a mechanism for supporting distributed processing [4].

There are three basic mechanisms that a process may perform on tuples in the tuple space: II, OUT,

and READ. The tuple fields in the Z! and READ operations may optionally contain variable arguments

for matching. I! and READ block until the tuple is present in the database. I| subsequently removes

the tuple from the database while READ does not. OUT installs a tuple in the database. The benefit to

distributed processing that the tuple space provides is the ability to add processes to the environment and

have them communicate with existing processes without first having to encode knowledge about existing

processes directly into their formalism. It has also been proposed that these basic tuple space operations

are sufficient for supporting other communication mechanisnm such as those defined in contract nets and

Actors. On the other hand, the use of Ii must be judicious in order to support the addition of other

processes that may also need to use the tuple. See [4] and [13] for more details.

The database provides three operations similar to the tuple space operations; these are: STORE,

RETRI£VlZ/gATCH, and DB-RI_0VE. The major difference between these operators and the tuple space

operators II, READ, and 0trr, is that these do not block. Another difference is that while II and READ
will non-deterministically select one of multiple matching tuples, gATCH will return all of them (ItE"rRIEVE

will behave non-deterministicMly). Although the database operations defined here are not identical to the

tuple space operations in the LINDA model, it is probably sufficient for handling distributed processing

protocols as the LINDA model [4].

The implementation of the database also supports a form of integrity constraints and a restricted

version of views. An integrity constraint is defined by a tuple. Fields of the tuple may contain one of

four items: An actual field descriptor (formal argument), a variable (to match an argument), a type

specifier--meaning that the field may match tuples with the corresponding field of the same type, and

finally, a type declarator--meaning that for all tuples matched on the other three options, this field

must be of the declared type. Views provide different databases for storage and retrieval. This is quite
different to the traditional use of views in most databases. What this provides is a way to organize data

into more logics] groupings. Currently, the use of integrity constraints is global across all views, in the
future this should use the view mechanism just as any other storage or retrieval operation does.

3.2 The Database Interface

The database interface is the module that links the database to the rule management system and

vice versa. The interface provides the necessary hooks for proper accessing and notification of data

in the database and of interest to the rule management system. The database interface provides the

operations STOREt, RF_0W!, I_tTCli! and R£TRZEWE!. It also provides a data and procedure abstraction

mechanismwa frame system [9, 14, 20]. Frames are used to extend the knowledge representation language

of the various tools for supporting complex domains requiring abstraction mechanisms.

Frames are an abstract organization of data into conceptual units. In this definition data may also be

procedure if it is subsequently executed. A frame may have any number of slots. Frames may be defined

as children of multiple parents (making inheritance potentially more complex) and may also have code
attached to them that is executed whenever a new instance of the frame or one of its children is created.

Slots have six optional aspects. The most used aspect is the :value aspect. This aspect is where a value
for the slot is located. The : if-ne_l_! aspect is used to store code that is executed if a slot value is

asked for. The :i_-added aspect is used to store code that is executed whenever the slot gets a new

value. There are two aspects that are used to constrain the value of the slot. The : constrain1; aspect

is used to store code that checks if an added value passes the constraint. Since this is user-defined code

that is used here.............there is no restriction on what it may do, only that it return a true or false status

indicating the result of the constraint. The :mustbe aspect constrains the value to be one of a list of

VII-66

3 LANGUAGE DESIGN AND IMPLEMENTATION FOR DOMAIN INDEPENDENCE 7

\ /

formal values or frames. Finally, the :distribution aspect is used to determine if the value of the slot

is for global distribution, accessible to all knowledge agents, or only for local usage.
Frame data is stored in the database as 5-tuples of the form: (frans <na,,e> <slot> <aspect>

<value>). Obviously, there is no restriction on the value aspects, they can be any normal data type as

well as executable code. Facts are stored in the database as 4-tuples: (fact <hue> :value <value>).

Frame inheritance information must also be stored in the database so that inheritance over frames may

take place in response to different knowledge agents requests for data values. The current implementation

does not yet store this data in the database.

It is the responsibility of the database interface to both store and retrieve information and to notify

the rule management system of changes to data made by other knowledge agents. Thus if knowledge

agent 1 makes a change to the value of a fact and knowledge agent 2 uses that fact on the left hand side
(LHS) of a rule, it is the responsibility of the database interface (and distributed database) to notify

knowledge agent 2 of the changed fact.

3.2.1 User Objects Example

As an example of using the frame system to represent user objects, the rule group and knowledge base

objects are shown here as they are defined for a large fault diagnosis knowledge base.

(frale

(framQ

:name knouledge-ban

:slots ((rule-groups :value nil)

(qents :value all)
(nmse :value nil)))

:name rule-group

:slots ((rules :value nil)

(name)
(window)

(quantlfied-var8)

(rg-var)

(plan)

(plan-state)

(plu-table :value nil)

(vlable-set :value nil)

(not-yet-vlable-set :value nil)

(flre-set :value nil)

(local-variables)

(rules-fired :value nil)

(conflict-set :value nil)

(tlckle-set :value nil)

(satisfled-set :value nil)

(unsatisfied-set :value nil)

(cant-_ire-set :value nil)

(flrod-set :value nil)

(unttcEled-sst :value nil)

(*lhs-tickled-queuee :value nil)

(erhs-tickled-qusuee :value nil)

(termination-condition :value nil)

(rules-uith-dynmic-lhs-putterns :value nil)

(ralu-ulth-dynamlc-rba-putterns :value ntl)

;; each el: (plan-state rules)
(backtrack-stack :value nil)

(coutrol-strutelff :value S'default-control-strutegy)

(couflict-resolutien-ltruteb_ :value

|,default-couflict-rssolution-strateb, y)

(execute :value #'sxecutel)

))

ORIGINAL PAGE IS

OF POOR QUALrl"Y VII-67

3 LANGUAGE DESIGN AND IMPLEMENTATION FOR DOMAIN INDEPENDENCE 8

3.3 The Rule Management System

The rule management system consists of two layers. The base layer is the rule language. This language
defines what rules are and how they are evaluated and interpreted. The second layer defines a knowledge

base management system (KBMS) that is built on top of the rule language. While the KBMS is a layer

on top of the rule language, it does not add anything to it; it is completely defined in terms of the rule

language s . The correct way to think of this is that the rule language is the basic level of expression for

the knowledge engineer. The knowledge engineer then writes a number of rules that define the KBMS.
This KBMS is like another shell that may be instantiated with a domain application, thereby defining

an expert system.

The rule language and the KBMS work hand in hand. The KBMS is a predefined object available

to the knowledge engineer. However, the KBMS definition may be easily modified and extended for
special applications. Furthermore, control strategies and conflict resolution strategies may be defined

using the rule language itself or by writing procedures (a kind of compiled form of the strategy). These

user definable strategies in combination with the expressibility of the rule language provide the power

to the rule management system for application to a wide variety of domains.

The KBMS defines a knowledge base to consist of a number of rule groups as well as domain knowl-

edge. Each rule group provides mechanisms for defining aspects of the inference strategy using either

further rule groups or user-defined functions. A rule group also has a mechanism for specifying the
level of determinism desired over rule execution [1], [7]. A mechanism for explicitly stating a level of

deterministic control over a set of rules is one of the things missing from many expert system shells.

Without this, the only way to get the necessary control is by inserting control knowledge into the rules

themselves--where it does not belong. By explicitly stating the difference between control over knowl-

edge and the knowledge itself, the maintenance problem becomes easier. The way control is added is by

examining the inference cycle of an expert system. Basically, the rule group inference strategy consists

of a match, evaluate, and fire cycle. The match phase is supported by the database interface which

automatically queues up potential rules on the tickled-queues of the rule group. The evaluate phase

then checks the rules on the tickled-queues to determine which ones belong in the conflict set. Finally,
one rule is selected and fired. This approach is completely non-deterministic in selecting which rules get

fired from the conflict set. In between the match and evaluate phases a control phase is added. This

control phase consists of the definition of a regular expression that defines which rules may he examined

and possibly fired next. In this implementation the transition table derived from the regular expression

is used instead of the regular expression itself. This is much simpler from the user's perspective. For

the user defining a number of rules and wanting to insert some control over them, it is easier to specify
a transition table over the rules than it is to define the regular expression that the transition table can

be derived from. Furthermore, it is easier to maintain a transition table during rule group modification.

The language of the rule management system is very complex. It supports more traditional data
access such as facts and frames. It supports procedural execution directly from rules in the form of

messages. This is how the KBMS is initially linked to the rule language. A default execution strategy,

including control strategy and conflict resolution strategy exists which may be started _om a rule using

the message form. The rule language also supports a form of typed quantification.

3.3.1 Heuristic Control Example

An example of the power of the rule language is the application of a control strategy for a KBMS. The

following example defines a rule group solely for performing the control strategy aspect of a forward

chainer for a KBMS. The point of this example is the ease with which these heuristics may be defined

and applied.

SHowever, to make this work efficiently there has been some optimicatlon. The rule language m_es certsln smmmptions
_d_out the existence c/certain KBMS domain constructs. An example of this is the assumed existence of s rule-group frmne
with a Wules" dot and a m'_-tlclded-queue*" alot.

V

3 LANGUAGE DESIGN AND IMPLEMENTATfON FOR DOMAfN INDEPENDENCE 9

Itule-_roup : freisht-cs

ee The first rule to be run is CS-Jhllel.

84 Following this we only allow CS-]Lule2.

44 After CS-lule2. go non-deterministically only aline CS-hle3-$.

84

CONTROL : ((start (CS-ltulel))

(CS-ltule ! (CS-ltule2))

(CS-lule2 (CS-itule3 CS-ltule4 CS-lule5))

(CS-hie3 (CS-itule3 CS-itule4 CS-klsS))

(CS-itule4 (CS-Itule3 CS-lule4 CS-ILUle5)))

84

84

84

84

84

The variable that we quantify over is rule-group.

This variable vilI be bound to

the rule group that this control strategy is applied to.

RG-VAIt : rule-group
84

84 CS-ltulel is an initialization rule.

84 It simply makes sure that so start with an

84 empty list.
e@

CS-ltulel

::>

[rule-result-list • empty]

e@

e@ CS-Rulo2 eyalnatss all the rules tn the viable-set of the rule-group and
e@ records the result in the rule-result-list. Each result takes the form of

4Ht (rule result), the result can be one o_: :ok, :rig, or :missing-patterns
@4

CS-itule2

FOR ALL rule it1 viable-set of rule-group
< ::>

[rule-result-list =

rule-result-list PLUS lisp :: wry-evaluate (rule) J •

(HI

e@ CS-ltule3 adds all the rules which evaluated to :ok to the conflict set of

@iS the rule group. It also removes them from the vlnbls set.
0@

CS-Itule3

FOK ALL rule-result in rule-result-list

WHEIE [lisp :: second (rule-result) = :ok]
< ::•

[¢ong'lict-sot O_ rule-group = COn/flier-set Of rule-group

PLUS lisp :: first (rule-result)]

[viable-met o_ rule-group = viable-set of rule-group

NILUS lisp :: first (rule-result)] •

e4

84 Similarly, CS-lule4 watches for rules with • sag result. Those that have an

@4J else art fired (via efT-interpret-else) and also remove4 fret the viable set.

ee

cs-luled

FOR ALL rule-result in rule-rusult-list

Wlih'_ [lisp :: second (rule-result) m :n K J

< ::>

[lisp :: sty-interpret-else (lisp :: first (rule-result))]

[viable-set of rule-group = viable-set (4 rule-group

RIIUS lisp :: first (rule-result)] •

84

84 CS-]tule5 watches for the rules that had :misslng-patterns and simply removes

VII-69

O.RIG]._{_LPAGE IS

OF POOR QUALIFY

3 LANGUAGE DESIGf_ AND IMPLEMENTATION FOR DOMAIN INDEPENDENCE I0

node 1
wheels of car

node 2
axels of car

node 3
size of car

Rule 1 [wheels of car = 4]

[axels of car = 2]
[size of ear = small]

_ [type ofci= passenger]rule

rule-node 1 _

rhs-nodes node 4
type of car

Figure 3: Rule Constraint Network Example

@e them from the viable sot of the rule group.

4_

C$-lulsS

F01 ILL rnle-rssult in rule-result-list

WHITE [llsp :: second (rule-result) • :mlsslng-patterns]

• ::>

[vlable-set of rule-group = vlable-sst of rule-group
MIIU$ llsp :: first (ruls-ruult)] •

N

@@ Finally, this rule group is done ghsn the viable set is empty.

@4J

[viable-set of rule-group • empty]

3.4 Tractability and the Rule Management System

Considering the generality and expressivity of the rule language and the KBMS, efllciency has the poten-

tial of being forgotten, both in development and implementation. There are three ways of maintaining
tractability in the rule language.

The first way of maintaining tractability is to manage the match phase of the inference cycle efficiently.

The conceptual definition of the match phase is to check each rule and evaluate its LHS and if it is :ok
then to queue it up for later interpretation. Obviously, this is also the slowest approach. The step this
implementation takes is to compile rules into a rule constraint network that maintains rules in a form
more suited for recognizing when data becomes available that has the potential of satisfying the LHS of a
rule. To be specific, all the reference variables of the LHS of a rule must have values in order to determine
if the LHS is satisfied. The rule constraint network represents variables as nodes in the network and rules

as rule-nodes (see Figure 3). As variables get values, the nodes representing the variables are triggered.
All the rule-nodes connected to the node are then triggered. These rule-nodes are then checked to see

if all the nodes representing the LHS variables have values. If so, the rule represented by the rule-node

is then put on the appropriate queue. As can be seen, this method allows rules to be queued that may
not be satisfied. The rule constraint network only checks to see if variables have values, not if they have
the correct value. Thus the rules on the tickled queues must still be evaluated for satisfaction.

Alternatively, rules could be compiled more completely so that variables are checked to see if they

: - VII-70

4 CONCLUSION II

have the right value. The complexity of the rule language implemented here makes this a difficult task

and it has not been determined that it would be cost effective. Languages with less expressivity can be

completely compiled much more easily (such as OPS5 using the RETE network [5] [6]).

The second way of maintaining tractability is by providing code for inference strategies instead of

providing declarative rules defining the inference strategy. This is making use of the compiled versus

interpreted option. This means that a programmer fluent in the rule language and its implementation

needs to be available for the knowledge engineering task. However, considering the expressivity of the

rule language, this may be a cost effective option. It is very easy for the programmer to express what

he wants without having to go into contortions over representational limits.

The third way to maintain tractability is by the effective use of knowledge. This is to make use of
Raj Reddy's fifth principle: Knowledge elirai, ates the need for search. In other words, the domain to

be represented needs to be analyzed for maximum efficiency in terms of knowledge organization. For

example, I can have two rule groups; one rule group forward chains on various data and computes a value

for the variable diagnosis. The other rule group then uses the value of diagnosis to output the results
to the user. If there are 50 rules in each rule group that use the variable, then 100 rules are triggered

whenever the value of the variable changes. If both of these rule groups are made to be sub-rule groups

of a control rule group, the first rule group can compute a value for diagnosis. The control rule group

can then set the value for the variable the-diagnosis as the value of diagnosis, the-diagnsosis is
then used by the second rule group instead of diagnosis. Now only 50 rules get triggered at any time.

The representation of knowledge should make maximum use of divide and conquer principles of

knowledge organization. Another approach along the same lines is to provide strong heuristic knowledge

to eliminate the need for search. This can come in many forms including domain guided inference

strategies over rule groups as well as judicious use of control over the execution of rules in a rule group

(i.e. the transition table method of control over rules).

4 conclusion

The rule management system language presented here has been shown to be both general and potentially

efficient. It can be applied to many domains by proper specification -- making use of the object oriented

nature of the language. This generality allows it to be applied to many domains including learning,

planning, and model-based reasoning as well as expert systems.

5 Acknowledgements

Thanks to Barry Ashworth and Bryan Walls forusefulcomments and criticisms.

This work was performed by Martin Marietta Astronautics Group under contract number NAS8-

36433 to NASA, George C. Marshall Space FlightCenter,Huntsville,Alabama.

References

[1] A. B. Baskin. Combining deterministic and non-deterministic rule scheduling in an expert system.

In AAMSI, 1986.

[2] Bruce G. Buchanan and Richard O. Duda. Pri.cipleso/Rsle-Based Ezpert Systems. Technical

Report HPP-82-14, Stanford HeuristicProgramming Project,1982.

[3]Bruce G. Buchanan and Edward A. Feigenbaum. Dendral and meta-dendral: their applications

dimension. In Readings i, Arli]icial Intelligence , pages 313-322, Morgan-Kaufmann Publishing

Co., 1981.

VII-71

REFERENCES 12

[4] Nicholas Carriero and David Geiernter. Linda in context. Communications of the A CM, 32(4),
1989.

[5] Charles L. Forty. Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19(1), 1982.

[6] Charles L. Forty and Susan J. Shepard. Rete: a fast match algorithm. AI Ezpert, January 1987.

[7] M.P. Georgeff. Procedural control in production systems. Artificial Intelligence, 18:175-201, 1982.

[8] D. Hanssler. Bias, version spaces, and valiant's learning framework. In Proceedings of the Fourth
International Wortshop on Machine Learning,pages 324-336, 1987.

[9] P.J. Hayes. The logic of frames. In B.L. Webber and Nils J. Nilsson, editors, Readings in Artificial

Intelligence, pages 451-458, Morgan Kaufmann, 1981.

[10] Douglas B. Lenat and Edward A. Feigenbanm. On the thresholds of knowledge. In International

Workshop on Artificial Intelligence for Industrial Applications, 1988.

[11] Hector J. Levesque. Knowledge representation and reasoning. Annual Reviews of Computer Science,
1986,

[12] C.L. Liu. Elements of Discrete Mathematics. McGraw Hill Book Co., 1985.

[13] Satoshi Matsuoka and Satoru Kawai. Using tuple space communication in distributed object-

oriented languages. In OOPSLA, 1988.

[14] M. Minsky. A framework for representing knowledge. In P. Winston, editor, The Psychology of

Computer Vision, pages 211-277, McGraw-Hill, 1975.

[15] A. Newell, J.C. Shaw, and B.A. Simon. A general problem-solving program for a computer. In
Information Processing: Proceedings of the International Conference on Information Processing,

pages 256-264, UNESCO, Paris, 1960.

[16] Raj Reddy. Presidential Address at the American Association for Artificial Intelligence Conference,
1988.

[17] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie, J. My-
]opoulve, and J.W. Schmidt, editors, On Conceptual Modelling, Springer-Verlag, 1984.

[18] J. Robinson. A machine-oriented logic based on the resolution principle. Journal of the Association

]or Computing Machinery, 12(1):23-41, January 1965.

[19] Mark Stefik, Jan Aikins, Robert Balzer, John Benoit, Lawrence Birnbanm, Frederick Hayes-Roth,
and Earl Sacerdoti. The organization of expert systems. Articial Intelligence, 18, 1982.

[20] Mark Stefik and Daniel G. Bobrow. Object-oriented programming: themes and variations. The AI

Magazine, 40-62, 1986.

[21] David E. Wilkins. Practical Planning: Ez_ending the Classical AI Planning Paradigm. Morgan
Kaufmann, 1988.

VII-72

KNOWLEDGE MANAGEMENT: AN ABSTRACTION OF
KNOWLEDGE BASE AND DATABASE MANAGEMENT SYSTEMS

A PAPER PRESENTED AT THE AI SYSTEMS IN GOVERNMENT CONFERENCE
IN MAY 1990.

VII- 73

Knowledge Management:

An Abstraction of Knowledge Base

and Database Management Systems

Joel D. Riedesel

Martin Marietta Astronautics Group

P.O. Box 179, MS: S-0550
Denver, Co. 80201

jriedesel@den.mmc.com

May 22, 19901

Abstract

Artificial intelligence application requirements demand powerfulrepresentatlon capabl]i_ties a.swell as et_-
ciency for real-time domains. Many tools exist, the most prevalent being expert systems tools such as ART, KEE,
OPS5, and CLIPS. Other tools just emerging from the research environment are truth maintenance systems for
representing non-monotonic knowledge, constraint systems, object oriented programming, and qualitative tea-
soning. Unfortunately, as many knowledge engineers have experienced, simply applying a tool to an application
requires a large amount of effort to bend the application to fit. Much work goes into supporting work to make
the tool integrate effectively.

KNOMAD, a Knowledge Management Design System, described here, is a collection of tools built in layers.

The layered architecture provides two major benefits; the ability to flexibly apply only those toois that are

necessary for an application, and the ability to keep overhead, and thus ineffldency, to a minimum. KNOMAD

is designed to manage marly knowledge bases in a distributed environment providing maximum flexibility and

expressivity to the knowledge engineer wtdh also providing support for efficiency.

1Thls work was performed under contract NAS8-36433 to NASA, George C. Marshall Space Flight Center

VI 1-74

1 INTRODUCTION 2

1 Introduction

Early Artificial Intelligence (AI) work centered around domain independent representation and reasoning
tools. Examples include General Problem Solver [23] and general purpose theorem provers such as

resolution theorem proving ([27]). These early approaches included powerful knowledge representation

languages and sound and complete search methods. However, as large problems were applied these early

programs proved to be intractable.

To manage the complexity and tractability of large domains there was a shift to domain dependent

systems, primarily expert systems. These domain dependent systems could then apply domain heuristics

instead of general search and restricted knowledge representation languages with inherent bias to reduce

the search space ([4, 29]). Although these domain dependent expert systems worked quite well, expert

system technology and knowledge representation of various expert system shells did not transfer well
from one domain to the next. Witness the diversity of expert system shells currently existing in the

commercial marketplace. The number of shells residing in the university research labs are probably

an order of magnitude larger. This diversity is a result of two main restrictions put on the knowledge

representation language: one, the restriction on knowledge that can be described using the language
of the shell and two, the restriction on mechanisms of inference over the knowledge. Because of these

restrictions, it became very important to analyze a domain very carefully to be certain that it could be

represented in an existing shell. If a good match was not found two approaches could be taken: the
shell could be used anyway and the application bent to fit it, or a home-grown shell that better matched

the application could be built. These domain dependent solutions turned out to be very tractable while

trading generality. This does not only apply to expert system shells, but to software and AI tools in

general ([18]).

Recently there has been a better understanding of the issues of search and heuristics and how they

can be used together to solve complex problems. An example system is SOAR which does large amounts

of search initially to solve a problem but learns from the solutions found. The learned solutions may

then be applied as heuristics for future problems ([16]). The point of all this being that heuristics can

eliminate the need for search while search compensates for the lack of heuristics ([24]). To make use of

this concept in AI tools, the tools must be capable of supporting the representation of domain dependent

heuristics in a general fashion. The tools need to have heuristic adequacy (see [34]) as well as general

search mechanisms. They need to be very general with the intent that the knowledge engineer specializes

or instantiates the tool to the specific application, thus making the tool efficient. The current generation
of AI tools do not support this sort of engineering environment s.

Real world problems need more than just heuristic adequacy in a tool. They need a collection of

tools for representing and reasoning about the various aspects that make up the problem. No one tool

will likely be able to manage a large scale, real world problem ([18, 17]). Furthermore, a collection of

tools ought to be expandable and modular. They ought to be able to reason about the same data and

share data easily.

The Knowledge]kl._agement Design System (KNOMAD), described here, more properly belongs

to the next generation of AI tools in the applications world. It may be considered as a knowledge

engineering environment. It provides a set of tools including rule management, database, constraint

system, frame system, model support, and so forth. These tools are organized in a modular fashion so
that more tools may be added and other tools may be removed or substituted as the application requires.

The rule management system tool, for example, provides a powerful rule language while also providing

mechanisms to keep the tool efficient.

2Although CL ([33D is a step in the right direction.

jJ
v

VII-75

2 ARTIFICIAL INTELLIGENCE APPLICATION REQUIREMENTS 3

2 Artificial Intelligence Application Requirements

The wide variety of available applications impose a large and diverse set of requirements on necessary

tools for encoding knowledge about them as well as performing inference over them. Furthermore, most

applications require more than one tool to represent the necessary knowledge. The following is a list of
tools, some set of which will be required by any application: 3

• A model building tool

• A database forboth distributedand localdata

• Procedural representationand execution

• Abstraction for both data and procedures

• Scriptsand frames

• Object orientedprogramming

• Constraint posting and propagation

• Analytic,quMitative,and quantitativereasoning

• Semantic nets

• Rule management

In addition,representationof both temporal and non-monotonic knowledge may need to be mixed

in with some ofthe above toolsas an applicationrequires,.....

Combinations of these toolsmay be put together to build applicationsin planning and prediction

domains, diagnosisdomains, and controldomains, forexample.

2.1 Expressibility and Efficiency

Expressivity has at least two meanings that may be distinguished. One meaning of expressiveness asks

whether a language allows something to be said. In this meaning various languages can be compared in

terms of formal language theory and classified as Type 0, 1, 2, or 3 ([20]). We find that most computer

languages are Turing equivalent and therefore it becomes moot to compare languages on the simple basis

of whether or not something can be said in them. The other meaning of expressiveness asks how easy

can it be said, how clear or understandable is it using the language? This meaning has a tendency to be

more subjective but may also be seen as a variation of the first. For example, anything can be expressed

using propositional logic, the problem being that an exponential number of statements may be needed

to say it. First order predicate calculus can immediately get rid of the exponential number of statements

(perhaps at the loss of clarity). It is the second meaning of expressivity, that is, how naturally can

something be stated, that is important here.
As a language becomes more expressive, the problem of tractability becomes more important. There

are two aspects to managing this problem. The first aspect is to manage tractability by providing

heuristic adequacy in the language ([34]). This method manages tractability by using heuristics in place

of search; providing direct paths to a solution. The second method is by providing emciency in the

language itself, for example, the RETE network in OPS5.
There are at least three options available for managing the expressivity versus tractability problem

when using general search methods ([19]). First Order Logic (FOL) will be used to represent complete

expressivity. Most will agree that practically anything can be represented in FOL. Furthermore, resolu-
tion theorem provers have been built which are sound and complete and will derive a proof in FOL if the

-_SeeHay_-Roth ([14]) for a more complete dlscusslon of objects that are required by AI tools.

V

VII-76

3 THE KNOMAD ARCHITECTURE 4

proof exists in the theory. The only problem is that the theorem prover may take an exponentially long

period of time deriving the proof. It may not even return at all if the proof does not exist. The alterna-

tives are to: One, restrict what the language can express (e.g. allow only conjunction) or two, restrict

the definition of implication (or derivability). One way of doing this is to define an implication operator
that is sound but incomplete. Finally, a third alternative is to use defaults and assumptions. Defaults

and assumptions are probably the least understood option. In fact, it is even possible that the use

of defaults and assumptions (introducing non-monotonicity) may be more intractable than monotonic

reasoning.

Common mechanisms for restricting the expressivity of the representation language are by the use

of databases, logic programs, versions of FOL, expert system languages, etc. The power of machine

learning programs are also usually a function of what they can represent. The representation language in
combination with the domain knowledge defines the size of the search space ([12]). Limits on knowledge

expression determine bounds on this space. Thus, this restriction on knowledge representation is a

mechanism for reducing the size of the search space.
The most common way of restricting implication is to define methods of inference that are sound

but not complete. One of the easiest ways to do this is to not allow backtracking. For example, in the

area of expert systems, there may be more than one way to derive a goal during backward chaining. By

using a beam search some of the possibilities may be thrown out and never considered by backtracking.

Therefore, this strategy can be seen to be sound but not complete. All possible solutions may not be

found (or even no solution).
Finally, defaults and assumptions may be used to infer knowledge without having to explicitly derive

it using an inference strategy. Knowledge is available due to inheritance and other mechanisms. This

approach helps tractability by eliminating the need to infer defaulted and assumed knowledge. On the

other hand, managing defaults and assumptions (as well as inheritance with exceptions) may cause some
intractability problems of its own.

3 The KNOMAD Architecture

To solve the problems of flexibility and expressivity the KNOMAD architecture was developed. While

trying to be both an expressive and powerful language, efficiency was also a primary issue. The KNO-

MAD architecture is a layered architecture as shown in Figure 1. The central component is the database,

a place for storing working memory data, for transferring and sharing data between knowledge agents,

and for storing long term data. The database is designed as a module and may be implemented as a

distributed database. A distributed database may then be used to support multiple cooperating knowl-
edge agents, each residing in different physical locations. The next layer is an interface to the database

that provides a frame system for abstracting both data and procedure as well as a mechanism for storing
simple facts. The top layer is where various tools are defined and implemented. All the tools make use

of the same data representation and may easily share data across domains and functions.

The architecture will be discussed in some detail in the following sections including aspects of imple-
mentation and efficiency.

3.1 The Database

The first level of support for KNOMAD is the database. The KNOMAD architecture views the database

as a plug compatible module. This provides the ability to take advantage of existing databases and

database management mechanisms such as ORACLE or INGRES, for example,

KNOMAD takes a tuple space view of the world and requires that the database represent them. A

tuple is an ordered sequence of (possibly) typed fields. Conceptually, a tuple may be thought of as an
object that exists independent of the process that created it. This implies that a place to store it is

needed if it is to live a life independent of processes used to create and destroy it. The tuple space is

sufficient for representing FOL and also sufficient for representing at least relational databases ([25]).

VII-77

3 THE KNOMAD ARCHITECTURE 5

Rule

Management Constraint

System System

Planning/

Scheduling

System

Model-

Based

Reasoning

Qualitative

Reasoning

V

, ,,, ,,

Uncertain Non-monotonic Temporal

Knowledge Knowledge Knowledge

Database Interface

Database

Figure h KNOMAD Layered Architecture

The tuple space has also been proposed as a mechanism for supporting distributed processing (the

LINDA model [5]). There are three basic mechanisms that a process may perform on tuples in the tuple
space (as in the LINDA model): Ii, Dtrr, and READ. The tuple fields in the II and READ operations may

optionally contain variable arguments for matching. Ill and READ block until the tuple is present in the

database. IN subsequently removes the tuple from the database while READ does not. OUT installs a tuple
in the database. The benefit to distributed processing that the tuple space provides is the ability to add

processes to the environment and have them communicate with existing processes without first having

to encode knowledge about existing processes directly into their formalism. It has also been proposed

that these basic tuple space operations are sufficient for supporting other communication mechanisms
such as those defined in contract nets and Actors. On the other hand, the use of I! must be judicious

in order to support the addition of other processes that may also need to use the tuple. See [5] and [21]
for more details.

The database provides three operations similar to the tuple space operations; these are: STORE,

RETRIEVE/MATCH, and DB-REMOV_.. The major difference between these operators and the tuple space

operators I!, READ, and 0vr, is that these do not block. Another difference is that while II and READ
will non-deterministically select one of multiple matching tuples, MATCHwill return all of them (RETRIEVE

will behave non-deterministically). Although the database operations defined here are not identical to

the tuple space operations in the LINDA model, they are probably sufficient for handling distributed

processing protocols as in the LINDA model.
This view of the database allows for many different implementations of the database to be used,

including distributed databases. A distributed database would provide the ability to support distributed

knowledge agents defined and managed using KNOMAD. Their communication is then supported by

the tuple space mechanism as implemented in the distributed database.

The implementation of the database for KNOMAD also supports a form of integrity constraints and a

restricted version of views. An integrity constraint is defined by a tuple. Fields of the tuple may contain

one of four items: An actual field descriptor (formal argument); a variable (to match an argument); a

type specifier, meaning that the field may match tuples with the corresponding field of the same type;

and finally, a type declarator, meaning that for all tuples matched on the other three options, this field

must be of the declared type. Views provide different databases for storage and retrieval. This is quite
different to the _raditional use of views in most databases. What this provides is a way to organize data

into more logic_ groupings. Currently, the use of integrity constraints is global across all views, in the

future this should use the view mechanism just as any other storage or retrieval operation does.

VII-78

3 THE KNOMAD ARCHITECTURE 6

3.2 The Database Interface

The database interface is the module that links the database to KNOMAD and KNOMAD to the

database. The interface provides the necessary hooks for proper accessing and notification of data in the
database and of interest to KNOMAD. The database interface provides the operations STDRE!, P.EM0VE!,

MATCH! and RETRIEVE!. It also provides a data and procedure abstraction mechanism, a frame system

([13, 22, 30]). Frames are used to extend the knowledge representation language of the various tools for

supporting complex domains requiring abstraction mechanisms.

Frames are an abstract organization of data into conceptual units. In this definition data may also be
procedure if it is subsequently executed. A frame may have any number of slots. Frames may be defined

as children of multiple parents (making inheritance potentially more complex) and may also have code
attached to them that is executed whenever a new instance of the frame or one of its children is created.

Slots have six optional aspects. The most used aspect is the :value aspect. This aspect is where a value

for the slot is located. The : if-needed aspect is used to store code that is executed if a slot value is

asked for. The :i:_-added aspect is used to store code that is executed whenever the slot gets a new

value. There are two aspects that are used to constrain the value of the slot. The : constraint aspect

is used to store code that checks if an added value passes the constraint. Since this is user-defined code

that is used here there is no restriction on what it may do, only that it return a true or false status
indicating the result of the constraint. The :mustbe aspect constrains the value to be one of a list of

formal values or frames. Finally, the :distribution aspect is used to determine if the value of the slot

is for global distribution, accessible to all knowledge agents, or only for local usage.

Frame data is stored in the database as 5-tuples of the form: (frame <name> <slot> <aspect>

<value>). Obviously, there is no restriction on the value aspects, they can be any normal data type as
well as executable code. Facts are stored in the database as 4-tuples: (fact <name> :value <value>).

Frame inheritance information must also be stored in the database so that inheritance over frames may

take place in response to different knowledge agents requests for data values. The current implementation

does not yet store this data in the database.

It is the responsibility of the database interface to both store and retrieve information and to notify

the various tools of changes to data made by other knowledge agents. Thus if knowledge agent 1 makes

a change to the value of a fact and knowledge agent 2 uses that fact on the left hand side (LHS) of

a rule, it is the responsibility of the database interface (and distributed database) to notify knowledge
agent 2 of the changed fact and possibly activate the rule for forward chaining.

3.3 The Tool Layer

The tool layer is where the various reasoning tools are defined. This is where the rule managementsystem,

the constraint system, the planning system, the model-based reasoning system, the qualitative reasoning

system, etc. are defined and implemented. Each of these various tools may define different language

representations and certainly define different reasoning mechanisms. However, all the tools must use the

underlying database and interface for storage and retrieval of data ([15, 28, 2, 6, 32, 1, 31, 8, 7]).
The power and flexibility of KNOMAD is in its layered architecture and in the power and flexibility

of the various tools. The rule management system is the only tool that has been implemented so far.

The following section describes this tool in detail and makes apparent the power of the rule language

and flexibility of inference that the rule system has.

3.3.1 The Rule Management System

The rule management system consists of two layers. The base layer is the rule language. This language

defines what rules are and how they are evaluated and interpreted. The second layer defines a knowledge

base management system (KBMS) that is built on top of the rule language. While the KBMS is a layer
on top of the rule language, it does not add anything to it; it is completely defined in terms of the rule

VII-79

3 THE KNOMAD ARCHITECTURE 7

language 4. The correct way to think of this is that the rule language is the basic level of expression for

the knowledge engineer. The knowledge engineer then writes a number of rules that define the KBMS.

This KBMS is like another shell that may be instantiated with a domain application, thereby defining

an expert system.

In KNOMAD, the rule language and the KBMS work hand in hand. The KBMS is a predefined

object available to the knowledge engineer. However, the KBMS definition may be easily modified and

extended for special applications. Furthermore, control strategies and conflict resolution strategies may

be defined using the rule language itself or by writing procedures (a compiled form of the strategy).

These user definable strategies in combination with the expressibility of the rule language provide the

power to the rule management system for application to a wide variety of domains.

The KBMS defines a knowledge base to consist of a number of rule groups as well as domain knowl-

edge. Each rule group provides mechanisms for defining aspects of the inference strategy using either

further rule groups or user-defined functions. A rule group also has a mechanism for specifying the

level of determinism desired over rule execution ([3, 11]). A mechanism for explicitly stating a level of

deterministic control over a set of rules is one of the things missing from many expert system shells.

Without this, the only way to get the necessary control is by inserting control knowledge into the

rules themselves--where it does not belong. By explicitly stating the difference between control over
knowledge and the knowledge itself, the maintenance problem becomes easier. _

The way control is added is by exarn_n_ngthe inference cycle of-an expert system. Basically, the rule

group inference strategy consists of a match, evaluate, and fire cycle. The match phase is supported by
the database interface which automatically queues up potential rules on the tickled-queues of the rule

group. The evaluate phase then checks the rules on the tickled-queues to determine which ones belong in

the conflict set. Finally, one rule is selected and fired. This approach is completely non-deterministic in

selecting which rules get fired from the conflict set. In between the match and evaluate phases a control

phase is added. This control phase consists of the definition of a regular expression that defines which

rules may be examined and possibly fired next. In this implementation the transition table derived from

the regular expression is used instead of the regular expression itself. This is much simpler from the

user's perspective. For the user defining a number of rules and wanting to insert some control over them,

it is easier to specify a transition table over the rules than it is to define the regular expression that the

transition table can be derived from. Furthermore, it is easier to maintain a transition table during rule
group modification.

The language of the rule management system is very complex. It supports more traditional data

access such as facts and frames. It supports procedural execution directly from rules in the form of

messages. This is how the KBMS is initially linked to the rule language. A default execution strategy,

including control strategy and conflict resolution strategy exists which may be started from a rule using

the message form. The rule language also supports a form of typed quantification.

3.3.2 Tractability and the Rule Management System

Considering the generality and expressivity of the rule language and the KBMS, efficiency has the poten-

tial of being forgotten, both in development and implementation. There are three ways of maintaining

tractability in the rule language.

The first way of maintaining tractability is to manage the match phase of the inference cycle efficiently.
The conceptual definition of the match phase is to check each rule and evaluate its LHS and if it is satisfied

then to queue the rule for later interpretation. Obviously, this is also the slowest approach. The step this

implementation takes is to compile rules into a rule constraint network that maintains rules in a form

more suited for recognizing when data becomes available that has the potential of satisfying the LHS of a

rule. To be specific, all the reference variables of the LHS of a rule must have values in order to determine

4However, to make this work e_c]ently there has been some optimization. The rule hmguage makes certain sssumptioas
about the existence of certain KBMS domain _tructs. An example of this is the assumed existence of a rule-group frame
with s "rules _ slot and a "*lhs-tick]ed-queue *_ a]ot.

VII-80

3 THE KNOMAD ARCHITECTURE 8

node 1
wheels of car

node 2
axels of car

node 3
size of car

Rule I [wheelsofcar= 4]

[axelsofcar--2]

[sizeofcar= small]
::>

[typeofcar= passenger]

I rule

rule-node 1 _

rhs-nodes node 4
type of car

Figure 2: Rule Constraint Network Example

More Expressivity

-- Less Efficiency

Basic Model

-- More Expressivity

-- More Efficiency

Less Expressivity

More Efficiency

Rule Management System OPS5(RETE)

Figure 3: Expressivity versus Efficiency

if the LHS is satisfied. The rule constraint network represents variables as nodes in the network and rules
as rule-nodes (see Figure 2). As variables get values, the nodes representing the variables are activated.
All the rule-nodes connected to the node are then activated. These rule-nodes are then checked to see

if all the nodes representing the LHS variables have values. If so, the rule represented by the rule-node
is then put on the appropriate activation queue. As stated, this method allows rules to be queued that
may not be satisfied. The rule constraint network only checks to see if variables have values, not if they
have the correct value. Thus the rules on the tickled queues must still be evaluated for satisfaction.

Alternatively, rules could be compiled more completely so that variables are checked to see if they
have the right value. The complexity of the rule language implemented here makes this a difficult task
and it has not been determined that it would be cost effective. Languages with less expressivity can be
completely compiled much more easily (such as OPS5 using the RETE network [9] [10]). Expressivity and
tractability is always lurking behind the scenes; see Figure 3 for an idea of where the rule management
system fits.

The second way of maintaining tractability is by providing code for inference strategies instead of
providing declarative rules defining the inference strategy. This is making use of the compiled versus
interpreted option. This means that a programmer fluent in the rule language and its implementation
needs to be available for the knowledge engineering task. However, considering the expressivity of the

rule language, this may be a cost effective option. It is very easy for the programmer to express what
he wants without having to go into contortions over representational limits.

VII-81

4 OPERATIONAL SCENARIO 9

The third way to maintain tractability is by the effective use of knowledge. This is to make use of

Raj Reddy's fifth principle: Knowledge eliminates the need for search ([24]). In other words, the domain

to be represented needs to be analyzed for maximum efficiency in terms of knowledge organization. For

example, I can have two rule groups; one rule group forward chains on various data and computes a value

for the variable diagnosis. The other rule group then uses the value of diagnosis to output the results
to the user. If there are 50 rules in each rule group that use the variable, then 100 rules are triggered

whenever the value of the variable changes. If both of these rule groups are made to be sub-rule groups

of a control rule group, the first rule group can compute a value for diagnosis. The control rule group
can then set the value for the variable the-diagnosis as the value of diagnosis, the-diagnosis is

then used by the second rule group instead of diagnosis. Now only 50 rules get triggered at any time.

The representation of knowledge should make maximum use of divide and conquer principles of

knowledge organization. Another approach along the same lines is to provide strong heuristic knowledge
to eliminate the need for search. This can come in many forms including domain guided inference

strategies over rule groups as well as judicious use of control over the execution of rules in a rule group
(i.e., the transition table method of control over rules).

3.4 Mixins

Diverse knowledge representation requirements may be needed by various domains. These may include

temporal knowledge and non-monotonic knowledge. Neither of these have been implemented in KNO-

MAD and may involve major modification to the database interface and structure. Conceptually, the

use of these aspects of knowledge are optional depending on the needs of the application. This is why

they are considered as a mixable item to those items that are necessary for a collection of tools.
Temporal knowledge, non-monotonic knowledge, and uncertain knowledge should be a set of exten-

sions to the database and database interface. They have not been implemented and therefore will not

be discussed in any more detail.

V

4 Operational Scenario

In this section the operation of the rule management system of KNOMAD is described further by way

of an example.

The Freight Agency Knowledge Base is a toy knowledge base consisting of a ten rule rule group that

determines how to send a package given its length, width, and height. The rule group also needs to

know if the package needs to be sent urgently as well as the destination country.

4.1 The Knowledge Base

A knowledge base for a knowledge agent consists of the following syntactic parts.

IB : <kb-name>

Domain : <domain file-nine>

Rule-Oroup : <rg-ntme>

(rg contents>

ule-Groul

Domain-lnoelodge

Begin : <starting rule groups>
Fatd-I[B

First the knowledge base is identified. Domain knowledge for the knowledge base can be given in two

ways. Usually the model of the domain is defined in some separate file and identified next. After the

domain knowledge the rule groups that make up the knowledge base are given. Then further domain

knowledge may be defined. This set of domain knowledge is generally used for domains requiring very =_
little domain knowledge as well as domain knowledge that is specific to the syntax of the rules in the

VII-82

4 OPERATIONAL SCENARIO 10

_v

L

knowledge base. A begin statement follows next. The begin statement allows one or more of the given

rule groups to be executed in parallel with one another. A Hearsay application would probably execute

all its rule groups in parallel with one another, for example. Finally an end statement is given.

The knowledge base for the Freight Agency Knowledge Base is as follows.

Be

Q@ The Freight Agency Knowledge Base

@@

Q@ This knowledge base defines two rule groups, the main one for

@@ determining how to send a package, and a secondar7 one for tmplzmenting

@e the control strategy of the first.

KB : freight

@@

@Q

@@
This lets us physically put the rule groups in separate files.

FILE : "/knomad/kbms/freight-rules,rg @ load the freight rules

FILE : "/knomad/kbms/freight-cs,rg @ load a control strategy rule group

@@ The domain knowledge. A number of constants and facts particular

Q@ to this knowledge base.
@@

Dosain-Knouledge : @ these are constants Just to this kb
constants :

europe ;

america ;

asia ;

australasia ;

road ;

rail ;

special ;

sea ;

air ;

no ;

yes ;

true ;

:ok ; :rig ; :miasing-patteru .

facts : C some initialized facts

european-countries =

(france belgium spain germany uk portug_1 italy austria poland) ;

a_rican-countriss • (usa canada mexico brazil) ;

asian-countries • (china japan india ussr) ;
australasian-countries = (australia nee-zealand) ;

modes = (road rall special sea air) ;

empty = () .

Initially ge want to begin execution of the main rule group: rgl.
ee

Begin : l_!

@@

@@ That's All Folks

44

End-EB

4.2 The Rule Group

A rule group consists of three parts. The first part is header information used for defining how the

rule group is to be executed. The second part is the rules themselves. The final part is a termination

VII-83 ORIG|N_L PAGE IS

OF POOR QUALFFf

4 OPERATIONAL SCENARIO 11

condition that defines when the rule group is done.
There are three items that may optionally be specified in the header information for a rule group.

The first allows a user to define a transition table that the rules will follow. As an example, the transition

table for the main rule group of the height Agency Knowledge Base is as follows.

COITgOL : ((start (frulel0))

(frulel0 (frulel frule2 frule3 frule4 frule$ frule6 frule7

fruld frule9))

(frulel (frulel frule2 frule3 frule4 frule5 frule6 frule7

frule8
(frule2 (frulel

fruld

(frule3 (fmlel

fr-ale8

(fr_le4 (fr.lel

frule8

(fruleS (frulel

frule8

(frule6 (frule!

frule8

(frule7 (frulel

frule8

(frule8 (frulel

frule8

(frule9 (frulel

frule8

frul,9)_ - -

frule2 frule3 frule4 fruleS frule6 frule7

ir.i,9))

frule2 frule3 frule4 frule5 frule6 frule7

frule9))

frule2 frule3 frule4 frule5 frule6 frule7

frule9))

frule2 frule3 frule4 frule5 frule6 frule7

frule9))

frule2 frule3 frule4 fruleg frule6 frule7

frule9))

frule2 frule3 frule4 frule5 frule6 frule7

fruleg))

frule2 frule3 frule4 frule5 frule6 frule7

fruleg))

frule2 frule3 frule4 fruleS frule6 frule7

fruls9)))

While this looks inordinately complex for a ten rule rule group, the following shows the transition

table for an 89 rule rule group that is used for diagnosing faults in a power system.

COITROL :

((start (lair-rule))

(init-rale (ralel))

(rule1 (rule2 rule2a))

(rule2 (rule3 rule4.1 rules rule3! rule31.1 rule31.2 rule3S

rule35.1))

(rule2a (rule3 rule4.1 rules rule31 rule31.1 rule31.2 rule35

rule35.1))

(rule3 (amle4 rule4a))

(rule4 (rule20))

(rule4a (rule32))

(rule32 (rule33))

(rule33 (rule34))

(rule4.1 (rule4.2))

(rule4.2 (rule4.3))

(rule4.3 (rule4.4 rule4.S rule4.6 rule4.7 rule4.8))

(rule4.8 (rule4.9 rule4.10 tale4.11 rR1e4.12 rile4.13

rule4.14 rule4.1S rule4.16 rule4.17))

(rules (rule6 rule6.1))

(rule6 (rule7 rule8 rule9))

(rule9 (rulelO rule11 rule12 rule13 rule15 rule17 rulel8))

(rule6.1 (rule19))

(rule3S (rule36 rule37 rule38 rule39 rule40 rule41 rule42 rule43))

(rule35.1 (rule44))

(rule44 (rule45 rule46 rule47))

(rule,i?

(_le_

(_lo_

(_leeO

(_1_1

(_1o66

(_ld7

(rule48 rule49 ruleS0 ruleS0.1 ruleS1 rule52

rule53 rule54 releS8 rule56))

(rule57 ruleSS))

(rule59 rule60))

(rule61))

(rule62 rule63 rule64 rule65 rule66))

(rule67)) :
(rule68 rule69 rule70 rule71 rule72 ruleT3 rule74))

V

VII-84

4 OPERATIONAL SCENARIO 12

(rule74 (ruleT8))

(rRle78 (rule77))

(rule77 (rula$6)))

These examples show that there is quite a bit of latitude in specifying the amount of determinism

one wants in a rule group. The second example includes an iteration pattern between rules 56 and 77.

Even though the second example defines the transition table for 89 rules, not all 89 rules are explicitely

represented. This is because a large number of them conclude a pattern that will allow the termination

condition to succeed, indicating that the rule group is done.

The control strategy of a rule group may also be defined in the header of a rule group. This is done
by specifying the name of either a function or of another rule group. If it is the name of another rule

group, that rule group will be used as the control strategy. This is what has been done for the Freight

Agency Knowledge Base.
Finally, the conflict resolution strategy of a rule group may be specified as the control strategy is

specified.

The main body of the rule group consists of the rules. The third section of the rule group simply

consists of an optional single condition, that if true, indicates the successful completion of the rule group.

If a termination condition for the rule group is not given, the rule group is never finished.

The rule group (minus transition table) for the Freight Agency Knowledge Base follows.

@e e(S) freight-rules, rg 1.2 1131/90
e@

Thls rule group determlnas hou to send a package.

0@ It is assumed that the package

e@ is being sent from so-,enhere in europe, lnltlally, e# need to compute the

@Q volume of the package based on its length, eidth, and height. This is done

in frulelO. The zone o_ were the package is sent is computed in frules6-9

@@ based on the country being shipped to. The only other piece of information

@@ that might be needed is whether or not it is urgent.
@@

rule-Group : _G!
@@

4}@ The control strategy for this rule group Is specified to be declared as the

@@ rule group freight-cs.

COFTROL-ST_TEaY : _reight-cs
@@

gules are read as IF ,condition> TREB <condition>

where the actual syntax is <condition_ ::> <condition>

Frulel (in english) :

IF the zone is europe AID the distance is less than 100
lED the voltu_ IS less than I00

THEI the mode to send the package is road.

Frulel

[zone = europe]

[distance < 1OO]

[volume < 100]

::)

[rode • road]

@@

@Q

@@

@@

H

@@

4@

@@

H

H

H

H

H

H

H

Frule2:

IF the zone is europe lid the TOltmm iS less than 200

OI

the distance is b'reater than or equal to iO0
AND the volume is less than iS0

rHE_ the mode is rail

VII-85

4 OPERATIONAL SCENARIO 13

Frulo2

[zone " europe]

[volue < 200]

OR

[distance >n 100]

[volume < 100]

::)

[mode - rat1]

Frule3

[zone m europe]

[distance >m 100]

::)

[node - special]

Frule4

[zone <> europe]
nR

[urgent - UO]

[volume >- SO]

::)

[mode- sea]

F_le5

[gone <> europe]

[urgent - yes]

[vol--e < SO]

::)

[mode • air]

FruleS

[country memberin euro]_Jm-countrtes]
::)

[zone " europe]

Fruls7

[countr 7 memberin americam-countries]
::)

[zone - america]

Frule8

[country mamborin asian-countries]
::)

[zone -- ante]

Frule9

[country mamberin uuotrnlanian-countrio8]

::>

[zone " zustruluota]

Frule10

::)

[vol,--o - length TINES uidth TIMES holsht]

[mode menbortn modes]

4.3 The Execution of a Knowledge Agent

The execution of a knowledge agent reduces to executing the rule groups specified in the begin statement

of the knowledge base. The execution of a rule group consists of initialization followed by a loop that

terminates when a rule group's termination condition is satisfied. The loop a rule group executes consists

of five steps: Step one is to check if the termination condition is satisfied, step two determines which _

VII-86

5 DISCUSSION 14

v rules are viable based upon the transition table of the rule group, step three runs the control strategy

for the rule group and computes the conflict set, step four runs the conflict resolution strategy of the

rule group and computes the fire set, step five then fires the rules in the fire set.
Since the rule management system uses a data-driven approach, if no rules have been queued up that

may potentially be fired, it is pointless to busy-wait through this loop. Therefore, the process executing

the rule group is woken up when there is work to do.

This model defines a very simple, yet very flexible approach to defining and executing knowledge

agents. In the Freight Agency Knowledge Base, the rule group waits until data is available to fire a x;ule

on. According to the transition table given earlier it will first try to fire rulel0. That rule determines

the volume of the package to be sent based on its length, width, and height. Once that rule fires, the

remaining rules fire nondeterministically until a value is computed that determines the mode with which

to send the package.
For brevity the control strategy rule group of the Freight Agency Knowledge Base is not given here.

5 Discussion

The two most controversial aspects of the rule management system are probably the transition table

method of control and the ability to specify rule groups as part of the execution strategy of a rule group.

There are two views to control in a rule group. One view prefers to embed control knowledge about

how one rule fires after another rule in the rules themselves. The other view prefers to make this explicit
by specification in terms of a transition table (or regular expression). Both views have their strong

points. KNOMAD takes the second view. It is the position of this author that it is easier and more

comprehensible to keep this knowledge explicit. It also forces the knowledge engineer to maintain an
accurate representation of the rules in the rule group. If a rule group starts becoming much to complex

to understand, it is probably an indication that it may be wise to split the rule group into sub-rule

groups or rethink what the rule group is doing. However, KNOMAD and the rule management system

don't know what a rule states, therefore it is still possible for a person to take the first view while using
KNOMAD.

The other controversial aspect is the ability to use one rule group to control another rule group. This

isn't so much a controversial part of KNOMAD as it is an ine_cient part. That is, inference is slowed

down an order of magnitude if this method is used. However, the point is that this provides the ability

to investigate new flavors of execution of a rule group before going down to LISP code and implementing

it efficiently. It is certainly not the intention of this paper to propose that these meta_rule groups be

used in a production system where speed is an issue.

The most challenging part of the development of KNOMAD and the rule management system has

been defining semantics. It is really quite amazing how complex an issue this really is. An OPS5 type

system has a relatively simple semantics. As rules are made more complex---disjunction is provided on
LHS and RHS, else conditions are added, quantification is provided at various levels--the meaning of

executing a rule takes on a temporal significance. When this complexity is available, it is not enough to

take a static view of working memory to determine how to fire a rule. Similar to Prolog, a theory of the

world must be maintained and kept consistent. In the rule management system presented here, most

of this complexity has been eliminated in favor of completing an initial system that is well-defined and

relatively efficient.

6 Conclusions and Future Work

The architecture of KNOMAD has been shown to be both flexible and powerful. Three very different

knowledge agents have been defined so far. The Freight Agency Knowledge Base is the simplest. However,

it was made more complex by using a meta_rule group for its control strategy. The monkeys and bananas

problem has been defined. It consists of about twenty rules and uses quantification extensively. It has

VII-87

7 ACKNOWLEDGEMENTS 15

been very useful to drive out limitations and inadequacies of the rule system. Finally, a large knowledge

base consisting of three rule groups and a toted of about 160 rules has been defined that performs fault

diagnosis in a power management and distribution system for a space station like platform ([26]). In

addition to the rules for this knowledge agent, the domain requires over 1500 facts to describe the model.

This last application has proved very successful.

6.1 Future Work

There are a number of issues that just this part of KNOMAD's implementation raises. The rule man-

agement system could be made more efficient by examining the applicability of RETE-net structures to
rules. There are cases where partial matches are appropriate and RETE structures would be too much.
However there are also cases where the RETE structures would be very relevant. The RETE structures

would have to be done in such a manner that they didn't enforce a particular direction on the rule (or

perhaps enforced both forward and backward chaining).

Another application for future work is to use databases in an integrative manner. Right now a

database is used as working memory and provides communication between knowledge agents as well as

object persistence. It would be useful to use data in existing databases as well as make data that is
the result of inference available to other applications. This requires a substantial amount of research

to determine the effects of temporal inferences as well as the more traditional problems of locking and

synchronization.
Adding planning and scheduling to KNOMAD is the next step in further development. This requires

a look into reasoning about temporal data and constraint systems and adding these as well. It may also

be necessary to determine how to deal with nonmonotonic data as we look at temporal reasoning as well

as more complex rules (e.g. RHS disjunction in a forward chaining system).

7 Acknowledgements

This work was performed by Martin Marietta Astronautics Group under contract number NAS8-36433

to NASA, George C. Marshall Space Flight Center, HuntsviLle, Alabama.

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832-843, November 1983.

[2] Barry R. Ashworth. Reactive autonomous planning in spacecraft. In Proceedings of the Conference
on Aerospace Applications of Artificial Intelligence, 1989.

[3] A. B. Buskin. Combining deterministic and non-deterministic rule scheduling in an expert system.
In AAMSI, 1986.

[4] Bruce G. Buchanan and Richard O. Duda. Principles of Rule-Based Ezpert Systems. Technical
Report HPP-82-14, Stanford Heuristic Programming Project, 1982.

[5] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM, 32(4),
1989.

[6] David Chapman. Planning for Conjunctive Goals. MIT Industrial Liaison Program Report 10-20-86,
Massachusetts Institute of Technology, 1986.

[7] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelligence, 24(3):347-

410, 1984.

VII-88

REFERENCES 16

[8] K. Forbus. Qualitative process theory. Artificial Intelligence, (24), 1984.

[9] Charles L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19(1), 1982.

[10] Charles L. Forgy and Susan J. Shepard. Rule: a fast match algorithm. A1 Ezpert, January 1987.

[11] M.P. Georgeff. Procedural control in production systems. Artificial Intelligence, 18:175-201, 1982.

[12] D. Haussler. Bias, version spaces, and valiant's learning framework. In Proceedings of the Fourth

International Workshop on Machine Learning, pages 324-336, 1987.

[13] P.J. Hayes. The logic of frames. In B.L. Webber and Nils J. Nilsson, editors, Readings in Artificial

Intelligence, pages 451--458, Morgan Kaufmann, 1981.

[14] Frederick Hayes-Roth. Towards benchmarks for knowledge systems and their implications for data
engineering. IEEE Transactions on Knowledge and Data Engineering, 1(1), 1989.

[15] Guy Lewis Steele Jr. and Gerald Jay Sussman. Constraints. Technical Report AI Memo No. 502,
Massachusetts Institute of Technology Artificial Intelligence Laboratory, November 1978.

[16] J.E. Laird, A. Newell, and P.S. Rosenbleom. Soar: an architecture for general intelligence. Artificial

Intelligence, 33, 1987.

[17] Doug Lenat and R.V. Guha. The World According to CYG. Technical Report ACA-AI-300-88,

Microelectronies and Computer Technology Corporation, September 1988.

[18] Douglas B. Lenat. Ontological versus knowledge engineering. IEEE Transactions on Knowledge

and Data Engineering, 1(1):84-88, March 1989.

[19] Hector J. Levesque. Knowledge representation and reasoning. Annual Reviews of Computer Science,
1986.

[20] C.L. Liu. Elements of Discrete Mathematics. McGraw Hill Book Co., 1985.

[21] Satoshi Matsuoka and Satoru Kawai. Using tuple space communication in distributed object-

oriented languages. In OOPSLA, 1988.

[22] M. Minsky. A framework for representing knowledge. In P. Whnston, editor, The Psychology of

Computer Vision, pages 211-277, McGrsw-HiU, 1975.

[23] A. Newell, J.C. Shaw, and H.A. Simon. A general problem-solving program for a computer. In

Information Processing: Proceedings of the International Conference on Information Processing,

pages 256-264, UNESCO, Paris, 1960.

[24] Raj Ruddy. Presidential Address at the American Association for Artificial Intelligence Conference,
1988.

[25] R. Reiter. Towards a logical reconstruction of relational database theory. In M. Brodie, J. My-
lopoulo_, mad J.W. Schmidt, editors, On Conceptual Modelling, Springer-Verlag, 1984.

[26] Joel D. Pdedesel, Chris Myers, and Barry Ashworth. Intelligent space power automation. In Pro-
ceedings of the Fourth IEEE International S_tmposium on Intelligent Control, 1989.

[27] J. Robinson. A machine-oriented logic based on the resolution prineiph. Journal of the Association

for Computing Machinery, 12(1):23-41, January 1965.

[28] Y. Shoham. Reasoning about Change. MIT Press, 1987.

VII-89

REFERENCES 17

[29] Mark Stefik, Jan Aikins, Robert Balzer, John Benoit, Lawrence Birnbaum, Frederick Hayes-Roth,

and Earl Sacerdoti. The organization of expert systems. ArticiaI Intelligence, 18, 1982.

[30] Mark Stefik and Daniel G. Bobrow. Object-oriented programming: themes and variations. The AI

Magazine, 40-62, 1986.

[31] P. Thyagarajan and Arthur M. Farley. Design and Implementation of a Qualitative Constraint
Satisfication System. Technical Report CIS-T1_87-03, Department of Computer and Information

Science University of Oregon, March 1987.

[32] Steven A. Vere. Planning in time: windows and durations for activities and goals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-5(3):246--267, May 1983.

[33] Masanobu Watanabe, Toru Yamanouchi, Masahik_Iwamoto, and Yuriko Ushioda. CI: a flexible
and dilcient tool for constructing knowledge-based expert systems. IBEE_pert, 41-50, Fall 1989.

[34] David E. Wilkins. Practical Planning: Eztending the Classical AI Planning Paradigm. Morgan

Kaufmann, 1988.

VII-90

A KNOWLEDGE BASE ARCHITECTURE
FOR DISTRIBUTED KNOWLEDGE AGENTS

A PAPER PRESENTED ATTHE AI FOR SPACE APPLICATIONS CONFERENCE
IN JUNE 1990.

\.._j

VII- 91

A KNOWLEDGE BASE ARCHITECTURE FOR

DISTRIB_ KNOWLEDGE AGENTS

Joel Riedesel
MS: S-0550

Martin Marietta Astronautics
P.O. Box 179

Denver, Co. 80201

jriedesel@den.mmc.com

Bryan Walls
NASA, Marshall Space Flight Center

Bldg. 4487 EB12
Huntsville, AL 35812

ABSTRACT

In this paper a tuple space based object oriented model for knowledge base representation and
interpretation is presented. An architecture for managing distributed knowledge agents is then
implemented within the model.

The general model is based upon a database implementation of a tuple space. Objects are then
defined as an additional layer upon the data base. The tople space may or may not be distributed
depending upon the database implementation. A language for representing knowledge and inference
strategy is defined whose implementation takes advantage of the tuple space. The general model
may then be instantiated in many different forms, each of which may be a distinct knowledge
agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA
model as well as using more well known message passing mechanisms.

An implementation of the model is presented describing strategies used to keep inference tractable
without giving up expressivity. An example applied to a power management and distribution
network for Space Station Freedom is given.

1. Introduction

In this paper ample space based object oriented model for knowledge base representation
and interpretation is presented. The model provides a general knowledge language that is at once

expressive and extendable. This allows it to be applied to many different domains including
knowledge base management systems for expert system shells and architectures for distributed

knowledge agents.
The field of Distributed Artificial Intelligence (DAI) is very complex. Besides the problems

involving representing any particular agent, there is a whole new set of problems that are
concerned with how multiple agents communicate with one another. This problem is more than

just defining a mechanism but also involves protocols. How does one model of communication
enhance the ease of solving one problem over another model?

The model presented in this paper supports DAI at a low level. This model presents
a framework for defining multiple knowledge agents that must coordinate and cooperate with one
another to solve some problem. This is different than most papers about DAI in that most papers
are concerned with problems of communication and cooperation protocols. This model defines an
architecture that supports the definition and implementation of diverse knowledge agents and their

necessary protocols as the problem requires.

a

Vli-92

k.../

I. 1. Requirements for Representing Distributed Knowledge Agents

There are a number of requirements a model will need to represent distributed knowledge
agents adequately. Four interrelated requirements are identified and discussed here: Domain
independence and expressivity,controlknowledge, and communication.

1.1.1. Domain Independence and Expressivity

Domain independence and expressivity of a model are very closely related. Domain
independence is concerned with the ability of the model to represent problems from any domain.
The particularrepresentationand storage of knowledge isimportant to domain independence.

However, more than simply being concerned with cxpressin.ga problem in the model, domain
independence isconcerned with the abilityof the model to integratewith the various problem

domain environments. Expressivenessisconcerned particularlywith theabilityand ease of stating

a problem inthemodel language and nothow theproblem might have todealwith the environment

of theproblem.
The requirement for domain independence isconcerned with the abilityto representa

problem in the model and integrate that problem solution into the problem environment. This really
implies that the language of the model must be extensible. It must be possible to enlarge the
language using the base language as a start. This includes the ability to change inference
mechanisms and define new models of inference. While most languages are concerned with
representing data, this language is also concerned with representing control knowledge.

To support this requirement the language of the model presented here is a rule language
built using object-oriented programming and extendable using the objects of the language. Rules
are a primitive object and are evaluated and interpreted based upon a generic view of dam stored in
an independent database. A basic rule group object is provided with a forward chaining inference
mechanism. A rule group may also be used to control the execution of another rule group thus
enabling the definition of new inference mechanisms using the language. Additionally, more
specific rule groups may be defined as sub-classes of the base rule group to support different
inference mechanisms defined with recta-rule groups.

The other hand of domain independence is expressivity. There are at least two aspects to
expressiveness: domain knowledge representation and control knowledge representation.

The problem of expressivity is that as more expressivity is allowed, along with more
domain independence, the more intractable a language may become. The basic inference model for
knowledge based systems consists of a match-select-fire cycle. The match phase determines those
rules which are enabled and may be fired. The select phase selects one rule from the matched rules
and thefn'cphase fires,or interprets,theselectedrule.This basicparadigm capturesthemodel of
inferencethatknowledge base systems perform. To make thisefficient,therearc a number of

options to the knowledge base designer. The language may be restricted,forexample providing
only universalquantification.Various compilationmechanisms may alsobe incorporatedtomake

the the match phase as static as possible. Both of these mechanisms are performed in OPS5 using
the RETE network ([7, 8]).

The model presented here provides a large amount of expressivity while moving from the
basic inference model presented above to something more tractable such as OPS5 and the RETE
network.

To provide a largeamount of expressiveness,the language of the model provides a frame

system for representingstructuredknowledge as well as simple facts.Rules may use data from

frame knowledge and factknowledge. In [I1],Hayes-Roth presentsa number of knowledge

categoriesthatare needed for bcnchmarking differentknowledge base systems. The categories
fact,rule,class,entity,relation,and structureare provided by the model presented here, The

remaining categories are not provided for but are planned as future work.

=_.....f /

VII-93

1.1.2. Control Knowledge Representation

Another requirement is the representation of control knowledge. The interpretation of the

knowledge of different knowledge agents will need to be bas_. upon the needs of the different
knowledge agents. Some may require forward chaining while some may reqmre backward
chaining. Some may require more exotic strategies such as forward chaining with beam search.

There are two aspectsof controlknowledge identifiedhere. One istheinferencestrategy

used over a rule group and may be provided by defining meta-rule groups or LISP code. The

other way of controllingrulesisby providin,g a levelof determinism intothe ordering of rules
themselves [I,9]. The way thisis done m most expert system shellsis by adding variable

references into rules that provide control (e.g.IF [step ,- i] ...THEN ...).This makes

maintenance of the rules very difficult. An alternative is to use a transition table, allowing any level
of non-determinism. Each entry in the transition table is used to index into the next possible rules.
This is equivalent to defining a regular expression over a rule group ([9]).

The mechanism provided here is a u-ansition table. As a rule is fired, that rule (its name) is
used to index into the transition table to determine what rules are allowed to be fired on the next

cycle. If the particular inference strategy being used allows more than one rule to be fired in a
particular cycle, each of the fired rules is used to index into the transition table and the resulting
lookups are unioned together. Complete non-determinism may be provided by not using a
transition table and complete determinism may be provided by specifying .only one rule as the next
rule for any particular rule fire. Any mix of determinism and non-deternnmsm may be specified
using this mechanism This is discussed further in section 2.

1.1.3. Robust Communication

The lastrequirement is for mechanisms for communication and coordination between

knowledge agents.There isdefinitelynot a consensus on the bestmechanism for communication

in the literature.The basic mechanism forcommunication and coordinationprovided here isthe

tuplespace mcxlcl([5,]4]).
The tuplespace model allowsthe additionof knowledge agentswithout having to modify

existing knowledge agents about the communication interactions of the new agents.

Communication is performed by insertingand removing tuples from the tuple space. If a

knowledge agent isdefined to take actionbased upon the existenceof a tuple,the data-driven

natureof thedatabasewillnotifythe knowledge agentof theabilityof theruletofne.

In additionto the tuplespace model, itisentirelypossibletoperform message pa:s.singand
otherforms of communication by definingnew functionsthatimplement message passing to the

knowledge language. Thus the tuple space, although probably the primary mechanism for
communication in this model, need not be at all restrictive to robust communications.

1.2. The Model Overview

Figure 1 shows the general architectme for supporting distributed knowledge agents. The

database, to support the common tupl.e space, is the only module common to the agents. Even
then,a common database isnot a requirement if alternativeforms of message passing are chosen.

The database interface and Knowledge Base Management System (KBMS) are instantiated once on
each physical platform.

In the figure a database is shown that exists independently of the KBMS. How the
database is implemented is not important to the operation of the KBMS. The database interface is
concerned with interfacingknowledge agentstothe database.Ifa tupleisassertedto thedatabase

by a knowledge agent,the databaseinterfacewillboth add ittothe database as well as notifyany

otherknowledge agentsthatuse thatmple of it.Rule Group Irepresentsone knowledge agentand

Rule Group 2 representsanother. Both of theseknowledge agentshappen tobe definedin a single

instantiationof the KBMS system. Rule Group 3 and 4 are sub-rulegroups and are partof the

VII-94

x

knowledge agent consisting of Rule Group 1. Another way to think of it is that each rule group
represents a distinct knowledge agent where Rule Group 3 and 4 are su'ictly controlled by the agent
of Rule Group 1. If another knowledge agent existed on another physical platform, there would be
an additional instantiation of a database interface and KBMS. The database itself would remain

(whether distributed or not) the same.

DataBase

DataBase
Interface

Collocated
Modules

KBMS
i

(.,.oo0,)

_Rule Group _ _ule Group _

j

Figure I -KBMS Architecture

2. The Model: Its Design and Implementation

The model described here is based on a shared database, used to communicated between
various knowledge agents through the passing of tuple data structures. Frames are defined on this
base through a database interface tO the knowledge agents, allowing data abstraction, inheritance,
and structuring. Each knowledge agent contains domain knowledge in the form of rules and data
and is controlled by the KBMS. The knowledge language of the KBMS provides the support to
implement knowledge agents and allows arbitrary function calls. Tractability is maintained by a
combination of rule compilation provided by the system and heuristic control knowledge provided
by the knowledge engineer. The following subsections describe the design of the KBMS in much
more detail.

2.1. The Base: The Database and Tuple Space

The first level of support for a KBMS is working memory, or the database. The
architecture presented here views the database as a plug compatible module. This provides the
ability to take advantage of existing databases and database management mechanisms such as
ORACLE or INGRES for example.

The KBMS takes a tuple space view of the world and requires that the database represent
them. A tuple is an ordered sequence of (possibly) typed fields. Conceptually, a tuple may be

VII-95

thought of as an object that exists independent of the process that created it. This implies that a
place to store it is needed ff it is to live a life independent of processes used to create and destroy it.
The tuple space is sufficient for representing First Order Logic (FOL) atad_ sufficient for :
representing at least relational databases ([17]),

The tuple space has also been proposed as a mechanism for Supporting distributed
processing (the LINDA model, see [5]). There are three basic mechanisms that a process may
perform on tuples in the tuple space: IN, OUT, and READ. The tuple fields in the IN and READ
operations may optionally contain variable arguments for matching. IN and READ block until the
tuple is present in the database. IS subsequently removes the tuple from the database while READ
does not. OUT installs a tuple in the database. The benefit to distributed processing that the tuple
space provides is the ability to add processes to the environment and have them communicate with
existing processes without first having to encode knowledge about existing processes directly into
their formalism. It has also been proposed that these basic tuple space operations are sufficient for
supporting other communication mechanisms such as those defined in contract nets and Actors.
On the other hand, the use of IS must be judicious in order to support the addition of other
processes that may also need to use the tuple. See [5, 14] for more details.

The database provides three operations similar to the tuple space operations, these are:
STORE, RETRIEVE/MATCH, and DB-REMOVE. The major difference between these operato_
and the tuple space operators IN, READ, and OUT, is that these do not block. Another difference
is that while IN and READ will non-deterministicaUy select one of multiple matching tuples,
MATCH will return all of them (RETRIEVE will also act non-deterministically). Although the
database operations defined here are not identical to the tuple space operations in the LINDA model
(they do not block), the operations, in Combination with the data-driven nature of a KBMS are
probably sufficient for managing distributed processing protocols as LINDA does ([5]).

This view of the database allows for many different implementations of the database to be
used, including distributed databases. A distributed database would provide the ability to support
distributed knowledge agents defined using the knowledge representation presented here. Their

communication is then supported by the tuple space mechanism as implemented in the distributed
database.

The implementation of the database for the KBMS described here also supports a form of
integrity constraints and a restricted version of views. An integrity constraint is defined by a tuple.
Fields of the tuple may contain one of four items: An actual field descriptor (formal argument); a
variable (to match an argument); a type specifier, meaning that the field may match tuples with the
corresponding field of the same type; and finally, a type declarator, meaning that for all tuples
matched on the other three options, this field must be of the declared type. Views provide different
databases for storage and retrieval. This is quite different to the traditional use of views in most
databases. What this provides is a way to organize data into logical groupings. Currently, the use
of integrity constraints is global across all views, in the future this should use the view mechanism
just as any other storage or retrieval operation does.

2.2. The Next Level: Data Abstraction and Inheritance

The database interface is the module that links the database to the KBMS and vice versa.
The interface provides the necessary hooks for proper accessing and notification of data in the
database and of interest to the KBMS. The database interface provides the operations STORE !,
REMOVE !, MATCH 1, and RETRIEVE !. It also provides a dam and_pmedure abstraction
mechanism-a frame system ([10, 15]). Frames are used to extend the knowledge representation
language of the _MS for supporting complex domains requiring novel abstractions and
inheritance.

Frames are an abstract organization of data into conceptual units. In this def'mition data
may be any object, it may be simple data or even procedural objects. A frame may have any
number of slots. Frames may be defined as children of multiple parents (making inheritance
potentially more complex) and may also have code attached to them that is executed whenever a

VII-96

new instanceof the frame or one of itschildreniscreated. Slotsmay have six optionalaspects.

The most used aspectisthe :value aspect.This aspectiswhere a value for the slotislocated.

The :if-needed aspectisused to storecode thatisexecuted ffa slotvalue is asked for. The

:if-added aspect isused to storecode thatisexecuted whenever the slotgets a new value.

There arctwo aspectsthatarcused toconstrainthevalue of the slot.The :constraint aspectis

used to storecode thatchecks ffan added value passesthe constraint.Since thisisuser-defined
code thereisno restrictionon what itmay do, only thatitreturna trucor falsestatusindicatingthe

resultof the constraint.The :mustbe aspectconstrainsthe value to be one of a listof formal

values or frames. Finally,the :distribution aspectisused to determine ifthe value of the

slotisforglobaldistribution,accessibleto allknowledge agents,or only forlocaluse.

Frame dataisstoredinthe databaseas 5-tuplcsof the form: (frame <name> <slot>

<aspect> <value>). Obviously, thereisno restrictionon the value aspects,theycan be any

normal datatype as well as executablecode. Facts arc storedin the database as4-tuples: (fact

<name> :value <value>).
Frame inheritance information must also bc stored in the database so that inheritance over

frames may take place in response todifferentknowledge agent'srequestsfor data values. The

currentimplementationdoes not yet storethisdatainthedatabase.
Itistheresponsibilityof thedatabaseinterfacetoboth storeand retrieveinformationand to

notifythcKBMS of changes todatamade by otherknowledge agents.Thus, ifknowledge agent I

makes a change tothe value of a factand knowledge agent 2 uses thatfacton the lefthand side

(LHS) of arule,itistheresponsibilityof thedatabaseinterface(and distributeddatabase)tonotify

knowlcdgc agent 2 of the changed fact.And viceversa,itistheresponsibilityof the system,when

knowledge agents arc being definedto notifythe database interfaceof which knowledge agents
index on which facts.

2.3. The Knowledge Base Management System

Now that the basic knowledge storing and retrieving mechanisms have been outlined, the
heart of the system needs to be defined.

The knowledge representation language is defined as a set of objects up to the level of
rules. A KBMS is then instantiatecl in the language using a combination of user-defined objects,
uscr-dcf'med code, rules and KBMS domain knowledge (i.e. knowledge about what the KBMS
is). The KBMS instantiated here consists of the user-defined objects: rule-group and

knowledge-base. The defaultinferencestrategyis implemented in code, but can also bc

implemented in the form of meta-rule groups. Rules for defining control strategy, for instance, are
defined. The domain knowledge consists of frame knowledge about rule groups, knowledge
bases, and knowledge of executable procedures.

To go one level further, an expert system is then instantiated from the KBMS. Here, rules
and rule groups are provided for the domain; domain knowledge is provided, as well as more
specificinferencestrategiesfor the expertsystem. To use an analogy from the flavors object

orientedsystem, the knowledge representationlanguage islikea base flavor. Itisnecessary to
definea mixin to itin order to give itfunctionality.Finally,the flavorcan be instantiatedintoa

user-dcf'mableobject(e.gan expertsystem forfaultdiagnosis).

The knowledge representationlanguage providesfunctionalitytothelevelof rules.A rule

has the basic form of LHS ::>RHS, and may includeelseconditions.Quantifiedrulesquantify
over some set,binding a Variabletosuccessivevaluesand executingthe sub-ruleof the quantified

rule.Rules have the basic operations:evaluate-lhs, evaluate-rhs, interpret-lhs,

interpret-rhs, and interpret-else. These operationsmay returnone of threevalues:

:ok, :rig,and :mlssing-patterns. Ifthe ruleevaluates :ok isreturned,ifconditionsare

not met :rigisreturned,and finally,ifpatternsneeded tocheck conditionsdo not yet exist(i.e.

values do not existforreferenced variables):missing-patterns isreturned.These return

valuesarc used by variouscontrolstrategiesthatcan bc user-dcf'mci

VII-97

The current implementation of the knowledge representation language assumes the
existence of a rule-group definition that must include the slots: *lhs-tickled-queue*

and *rhs-tlckled-queue*. These slotsare used to queue up ruleswhose LHS and RHS

(respectively) are potentially : ok. This allows a wide variety of control strategies to be defined
including forward and backward chaining as well as various combinations thereof.

The KBMS implemented here defines a knowledge base to consist of a number of rule
groups as well as domain knowledge. Each rule group provides mechanisms for defining aspects
of the inferencestrategyusing eitherfurtherrulegroups or user-definedfunctions.A rulegroup

alsohas a mechanism for specifyingthe levelof determinism desiredover ruleexecution ([I,9]).

Basically,therulegroup inferencestrategyconsistsof a match, evaluate,and fireloop. The match

phase issupported by the database interfacewhich automaticallyqueues up potentialruleson the

tickled-queues. The evaluate phase then checks the rules on the tickled-queues to determine which
ones belong in the conflict set. Finally, one rule is selected and fired. This approach is completely
non-deterministic in determining which rules get fired from the conflict set. In between the match
and evaluate phases a control phase is added. This control phase consists of the definition of a
regular expression that defines which rules may be fired next. In this implementation the transition
table derived from the regular expression is given instead of the regular expression itself. This is
much simpler from the user's perspective. For the user defining a number of rules and wanting to
insert some control over them, it is easier to specify a transition table over the rules than it is to

define the regular expression that the transition table earl be derived from. Furthermore, it is easier
to maintain a transition table than a regular expression during rule group modification.

The knowledge representation language, although not completely independent of the
KBMS, defines a very general mechanism for specifying knowledge and inference. The KBMS
defined here is also very general and allows for a wide variety of specification of inference
strategies over the knowledge. This can be done using the knowledge language or by alternatively
writing executable code directly (i.e. interpreted vs. compiled).

2.4. The Tractability of the KBMS

Considering the generalityand expressivityof the knowledge language and the KBMS,

efficiency has the potential of getting lost. There are three ways of maintaining tractability in the

knowledge language.
The first way of maintaining tractability is to manage the match phase of the inference cycle

efficiently. The conceptual definition of the match phase is to check each rule and evaluate its LHS
(RI-IS) and if it is : ok then to queue it up. Obviously, this is also the slowest approach. The step
this implementation takes is to compile rules into a rule constraint network that maintains rules in a
form more suited for recognizing when data becomes available that has the potential of satisfying
the LHS (RHS) of a rule. Consider the LHS of a rule. During evaluation, all the referenced
variables must have values in order to determine if the LHS is satisfied. The rule constraint

network represents variables as nodes in the network and rules as rule-nodes (see Figure 2). As
variables get values, the nodes representing the variables are triggered. All the rule-nodes
connected to the node are then triggered. These rule-nodes are then checked to see if all the nodes

representing the LHS (P,/-IS) variables have a value. If so, the rule represented by the rule-node is
then put on the appropriate queue. As can be seen, this method allows rules to be tickled that may
not be satisfied. The rule constraint network only checks to see if variables have values, not if they

have the right value. Thus the rules on the tickled queues must still be evaluated for satisfaction.
Quantified rules are also compiled into this form as the variables being quantified over are

given values. Thus, if a rule asks if there exists a symptom in the symptom-set and there are three
symptoms in symptom-set, then three instances of this graph structure will be created, one of

which may cause the rule to fire.

VII-98

Rule 1

node 1

wheels of car

node 2
axels of car

node 3
size of car

[wheels of car - 4]
[axels of car - 2]
[sizeofcar. small]
::>
[type of car = passenger]

rule

-)le node 1
rhs-nodes

node 4 Itype of car

Figure 2 - Rule Constraint Network Example

Alternatively, rules could be compiled more completely so that variables are checked to see
ff they have the right value. The complexity of the knowledge language implemented here makes
this a difficult task and it has not been determined that it would be cost effective. Languages with
less expressivity can be completely compiled much more easily (such as OPS5 using the RETE
network [7, 8]). The expressivity and tractability trade-off turns up once again.

The second way of maintaining tractability is by providing code for inference strategies
instead of providing rules defining the inference strategy. This is making use of the compiled vs.
interpreted option. This means that a programmer fluent in the language that the knowledge
language is implemented in needs to be available for both implementation and maintenance.
However, considering the expressivity of the knowledge language, this may be a cost effective
solution. It is very easy for the programmer to express what is desired without having to go into
contortions over representational limits.

The third way to maintain tractability is by the effective use of knowledge. This is to make
use of Raj Reddy's fifth principle: "Knowledge eliminates the need for search" ([16] see also
[12]). In other words, the domain to be represented needs to be analyzed for maximum efficiency
in terms of knowledge organization. For example, I can have two rule groups; one rule group
forward chains on various data and computes a value for the variable diagnos is. The other rule
group then uses the value of diagnosis to OUtpUt the results to the user. If there are 50 rules in
each rule group that use the variable diagnosis, then 100 rules are trigger_ whenever the value
of the variable changes. If both of these rule groups are made to be sub-rule groups of a control
rule group, the first rule group can compute a value for diagnosis. The control rule group can
then set the value for the variable the-diagnosis as the value of diagnosis, the-
diagnosis is then used by the second rule group instead of diagnosis. Now only 50 rules
get triggered at one time.

The representation of knowledge should make maximum use of divide and conquer
principles of knowledge organization. Another approach along the same lines is to provide strong
heuristic knowledge to eliminate the need for search, This can come in many forms including
domain guided inference strategies over rule groups as well as judicious use of control over the
execution of rules in a rule group (i.e. the transition table method overrules).

-.._j

VII-99

3. A Power Management and Distribution Knowledge Agent

In this example a knowledge agent for managing power and distribution for Space S_fion
Freedom is presented. The knowledge base consists of approximately 150 rules at this time.
Naturally, space limitations prohibits the presentation of the entire knowledge base. This example
should be sufficient to illustrate the representational capabilities of the knowledge language and
how it can be applied to defining multiple agents for distributed processing tasks.

The first part of this example consists of the definitions required by the knowledge
language to support the KBMS. The second part then describes the Power Management and
Distribution Knowledge Agent.

3.1. Definitions for KBMS Support

These definitions define the user-accessible structure of a knowledge base and of a rule

group. The lisp frame is for defining various functions that may be called from rules.

(frame :name knowledge-base

:slots ((rule-groups :value nil)

(agents :value nil)

(name :value nil)))

(frame :name rule-group
:slots ((rules :value nil)

(name)

(quantified-vars)

(rg-var)

(plan)

(plan-state)

(plan-table)

(viable-set :value nil)

(not-yet-viable-set :value nil)

(fire-set :value nil)

(local-variables)

(conflict-set :value nil)

(tickle-set :value nil)

(satisfied-set :value nil)

(unsatisfied-set :value nil)

(cant-fire-set :value nil)

(fired-set :value nil)

(untickled-set :value nil)

(*lhs-tickled-queue* :value nil)

(*rhs-tickled-queue* :value nil)

(termination-condition :value nil)

(control-strategy :value

#'default-control-strategy)

(conflict-resolution-strategy :value

#'default-conflict-resolution-strategy)

(execute :value #'execute)))

(frame :name lisp

:slots ((evaluate :value

(evaluate-lhs

(evaluate-rhs

(interpret-rhs

(interpret-lhs

(interpret-else :value

(first :value #'first)

#'evaluate)

:value #'evaluate-lhs)

:value #'evaluate-rhs)

:value #'interpret-rhs)

:value #'interpret-lhs)

#'interpret-else)

VII-lO0

(second :value #'second)

(format :value #'format)

(length :value #'length)))

3.2. Power Management and Distribution Knowledge Agent

The main knowledge base is defined here. It is called pmad and uses a domain file
(domain.lisp) to def'me the various data structures (domain knowledge) relevant to the knowledge
agent. The knowledge base consists of three rule groups; a control rule group for controlling the
diagnosis of hard faults, a hard fault rule group for computing a diagnosis, and a diagnosis rule
group simply for printing a diagnosis.

KB : pmad

DOMAIN : domain.lisp

RULE-GROUP : control-rg

This control rule Stoup currently manages the collection of fault information for diagnosis. It controls the execution

of two rule groups: hard-fault and diagnosis,for performing and printing out diagnosis information respectively.

Eventually rules will be added to this knowledge agent for soft fault and incipient fault analysis.

CONTROL : ((start (Control-Rulel))

(Control-Rulel (Control-Rule2))

(Control-Rule2 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule3 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule4 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule5 (Control-Rule6))

(Control-Rule6 (Control-Rule1)))

- /

Control-Rulel

THERE EXISTS symptom-set in symptom-set-queue
< ::>

[the-symptom-set - symptom-set]

[diagnosis-set - empty] >

Control-Rule2

::>

[clusters - power-domain :: cluster-symptoms

(the-symptom-set)]

Control-Rule3

THERE EXISTS cluster in clusters

< ::>

[symptoms of symptom-setl - symptoms of cluster]

{ symptom-set1 - cluster] >

ELSE

[ready-to-diagnose - false]

Control-Rule4

THERE EXISTS symptom in symptoms of symptom-setl

< [hard-fault :: execute (hard-fault) - :ok]

::>

[diagnosis-set - diagnosis-set PLUS diagnosis]

VII-101

[the-diagnosis - diagnosis]

[diagnosis - :unknown]

[diagnosis-rg :: execute (diagnosis-rg)]

[clusters - clusters MINUS symptom-set1] >

Control-Rule5

[ready-to-diagnose - false]

[FOR ALL diagnosis1 in diagnosis-set

< [diagnosis1 - diagnosis-2]

OR

[diagnosis1 = diagnosis-31] >]

::>

[the-diagnosis - diagnosis-no-power]

[diagnosis-set - diagnosis-set PLUS the-diagnosis]

[ready-to-diagnose - true]

ELSE

[ready-to-diagnose - true]

Control-Rule6

[ready-to-diagnose = true]

::>

[diagnosis-rg :: execute (diagnosis-rg)]

[symptom-set-queue = symptom-set-queue

MINUS the-symptom-set]

[symptom-set1 - :unknown]

[clusters - :unknown]

[ready-to-diagnose - :unknown]

RULE-GROUP : hard-fault.rg

Thisrulegrouptakesinformationaboutafaultand,afterdeterminingifanytestingneedstobedoneand doingit,
determinesthefaultandassignsdiagnosisavalue.

As canbe seen,thecontrolthatisspec_ableoverarulegroupmay bequitecomplex.Thewholetransitiontable
forthisrulegroupisnotgiven(althoughthisisone-thirdofit,fora rulegroupconsistingofabout90 rules),but
theexpressivityisstillquiteapparent.

CONTROL : ((start (init-rule))

(init-rule (Rule1))

(Rule1 (Rule2))

(Rule2 (Rule3 Rule4.1 Rule5 Rule31 Rule31.1

Rule31.2 Rule35 Rule35.1))

(Rule3 (Rule4))

(Rule4 (Rule20 Rule32))

(Rule32 (Rule33))

(Rule33 (Rule34))

(Rule4.1 (Rule4.2))

(Rule4.2 (Rule4.3))

(Rule4.3 (Rule4.4 Rule4.5 Rule4.6 Rule4.7

Rule4.8))

)

Init-rule

::>

[symptom-set - symptoms of symptom-set1]

[possible-top-switches - empty]

V

k.J

VII-102

[tripped-top-switches - empty]

Rulel

::>

[top-symptoms - power-domain ::

top-symptoms (symptom-set)]

Rule2

[lisp :: length (top-symptoms) > 1]

::>

[type - multiple-tops]

ELSE

[type - single-top]

; •

Rule3

[type = multiple-tops]

[THERE EXISTS symptom in top-symptoms

< [lisp :: length

(switches-below of switch of symptom) > 0] >]

[FOR ALL symptom in top-symptoms

< [fault of symptom = fast-trip]
OR

[fault of symptom = over-current] >]

::>

[FOR ALL symptom in top-symptoms

< [tripped-top-switches = tripped-top-switches PLUS

switch of symptom] >]

[THERE EXISTS symptom in top-symptoms

< [possible-top-switches - switch of symptom PLUS

siblings of switch of symptom] >]

[THERE EXISTS symptom in top-symptoms

< [trip-type - fault of symptom] >]

[type - multiple-top-current-trip]

. . .

Rule4.4

[type - multiple-tops]

[lisp :: length (new-symptoms) - 1]

[THERE EXISTS symptom in new-symptoms

< [THERE EXISTS symptom1 in top-symptoms

< [switch of symptom - switch of symptom1]

[fault of symptom- fault of symptom1] >] >]
::>

[diagnosis - diagnosis-54]

[diagnosis]

RULE-GROUP : diagnosis, rg

This rule group simply prints out some statements and communicates diagnostic information to the scheduling

knowledge agent depending on the particular diagnosis encountered.

d-rulel @@ backrush in load center

[the-diagnosis - diagnosis-54]

::>

[the-diagnosis - :unknown]

VII-103

[lisp :: format (t "-%The following load center

RPCs tripped on fast-trip~%")]

[the-diagnosis - :unknown]

The rest of the knowledge base for this knowledge agent.

Domain-Knowledge :

constants :

t ; :ok ; :ng; :missing-patterns ; yes ; no ;
hard-fault ;

diagnosis-rg

multiple-tops ;

single-top ;

multiple-top-current-trip ;

over-current ;

under-voltage ;

fast-trip ;

ground-fault ;

diagnosis-i ;

diagnosis-2 ;

diagnosis-no-power .

facts :

empty - ()

frames :

(fcreate-instance 'symptom-set 'symptom-set1)

Begin : control-rg

END-KB

+++++++++++++++++

domain.lisp

+++++++++++++++++

(frame :name power-domain

:slots ((top-symptoms :value #'top-symptoms)

o . .

(close-switch :value #'close-switch)))

(frame :name symptom-set

:slots ((symptoms)))

(frame :name symptom
:slots ((switch) (fault)))

(frame :name switch

:slots ((name)

(type)

(current)

(switches-below :value nil)

(switch-above :value nil)

(siblings)

VII-I04

v

.°.

(current-rating)
(fast-trip-percent)))

Lots of domain knowledge here to build instances of switches and sensors, etc. Knowledge of the topology is
encoded here. About 30k worth.

4. Conclusions and Future Work

An architecture for defining and modifying knowledge base management systems that may

be used for applications in distributed AI has been presented. The architecture is very flexible and
relatively efficient. It has been used to dcf'me three very different knowledge agents: One for
solving a toy problem to compute how to send a package consisting of about ten rules; One for

solving the monkeys and bananas problem consisting of about twenty fairl.y complex rules, this
one was directly adapted from a solution given for OPS5; Finally the agent given in this paper and
consisting of around 150 rules.

The results we have noticed so far have shown that this architecture provided the ability to
easily implement a solution to a wide variety of problems. The monkeys and bananas problem has
driven out many areas of weakness in the implementation that are being dealt with. The speed with
which this architecture solves the monkeys and bananas problem is hardly even comparable to that
of OPS5 at this point. However, the result of implementing our fault diagnosis problem for power
management and distribution has turned out very well. Using simple forward chaining and lots of
control knowledge in the hard fault rule group has enabled us to provide a solution that is very fast
and easily maintainable. The maintainability is very important for this domain as the requirements
for Space Station Freedom have not been completely specified.

4.1. Future Work

This system is being implemented as part of a much larger system, KNOMAD (Kaflwledge
Management and Design System). We have identified a number of areas where knowledge needs
to be added to support a completely robust, domain independent environment for specifying
knowledge based systems. These include the addition of a constraint system, a temporal database,
and analytical and qualitative reasoning. These additions will then support planning, scheduling,
and causal reasoning at the least. Adding these components must involve how the KBMS will
access and use these components as well as how these components will use the existing database
and database interface mechanisms.

Work also needs to be pursued to determine the possibility of adding RETE-like structures
as a part of the rule constraint network.

5. Acknowledgements

This work is being supported by NASA, Marshall Space Flight Center, contract NAS8-
36433.

6. References

[1] Baskin, A.B., "Combining Deterministic and Non-deterministic Rule Scheduling in an
Expert System," AAMSI, 1986.

[2] Bond, Alan H., and Les Gasser, Eds., "Readings in Distributed Artificial Intelligence,"
Morgan Kaufman, 1988.

VII-105

=\

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Brodie, M.L., J. Mylopoulos, and J.W. Schmidt, (Eds.), "On Conceptual Modelling,"
Springer-Verlag, New York, 1984.

Buchanan, Bruce G., and Richard O. Duda, "Principles of Rule-Based Expert systems,"
Stanford Heuristic Programming Project Report No. HPP-82-14, 1982.

Carriero, Nicholas, and David Gelernter, "Linda in Context," Communications of the
ACM, 32(4), 1989.

D'Angelo, Antonio, Giovanni Guida, Maurixo Pighin, and Carlo Tasso, "A Mechanism
for Representing and Using Meta-Knowledge in Rule-Based Systems," Approximate
Reasoning in Expert Systems, 1985.

Forgy, Charles L., "RETE: A Fast Algorithm for the Many Pauern/Many Object Pattern
Match Problem," AI 19(1) 1982.

Forgy, Charles L., and Susan J. Shepard, "PETE: A Fast Match Algorithm," AI Expert,
Jan. 1987.

Georgeff, M.P., "Procedural Control in Production Systems," AI 18, pp. 175-201, 1982.

Hayes, P.J., "The Logic of Frames," in Webber, B.L., and Nils J. Nilsson (Eds.)
Readings in Artificial Intelligence, pp. 451-458, 1981.

Hayes-Roth, Frederick, "Towards Benchmarks for Knowledge Systems and Their
Implications for Data Engineering," IEEE Transactions on Knowledge And Data
Engineering, Vol. 1, No. 1, March 1989.

Lcnat, Douglas B., and Edward A. Feigenbaum, "On the Thresholds of Knowledge,"

InternationalWorkshop on ArtificialIntelligenceforIndustrialApplications,1988.

Lcvesque, Hector J.,"Knowledge Representation and Reasoning," Annual Reviews of
Computer Science, 1986.

Matsuoka, Satoshi,and SatoruKawai, "Using Tuple Space Communication in Distributed

Object-OrientedLanguages," OOPSLA !988 _gs.

Minsky, M., "A Framework for Representing Knowledge," in P. Winston (Ed.) The
Psychology of Computer Vision, McGraw-Hill, New York, pp. 211-277, 1975.

Reddy, Raj, Presidential Address at the American Association for Artificial Intelligence
Conference, 1986.

Reiter,R., '_rowardsa Logical Reconstructiono RelationalDatabase Theory," in [3], pp,
191-233, 1984.

Stefik, Mark, Jan Aikins, Robert Balzer, John Benoit, Lawrence Birubaum, Frederick
I-Iayes-Roth, and Earl Sacerdoti, "The Organization of Expert Systems, A Tutorial," AI 18,
1982.

Wilkins, David E., "Practical Planning: Extending the Classical AI Planning Paradigm,"
Morgan Kaufman, 1988.

V

VII-I06

